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1 EXECUTIVE SUMMARY

This report presents the results of the  study on sharing between the Fixed Service (FS) and passive sensors of the
Earth Exploration-Satellite (passive) Service (EESS) in the frequency band 50.2 - 66 GHz. The study has been
focused on the bands 50.2 - 50.4 GHz and 54.25 - 58.2 GHz, which are allocated on a co-primary basis in the Radio
Regulations.

The report gives the background on why these two services require allocations in this part of the spectrum. It also
investigates the required protection criteria for the EESS and the operating requirements for the FS.

The findings are that sharing is possible at frequencies above 55.78 GHz. At frequencies between 54.67 - 55.78 GHz
sharing would be possible with varying degrees of restrictions on the FS. Below 54.67 GHz, sharing is totally
impracticable within the 15 MHz bandwidth of a push-broom sensor channel. The following should be noted about
these conclusions:

- the calculations have been based on the need to protect cross-track push-broom sensors, which are expected to
be brought into service soon after 2005; the current generation of passive sensors require less stringent
restrictions on the FS,

- a number of indirect propagation mechanisms have been identified, but the impact of these could not be firmly
established; the conclusions are based on the impact of the direct propagation mechanism, with the preliminary
assumption that the interference caused by other mechanisms would be accepted by the remote sensors,

- fixed links are assumed to be located at an altitude of 0 km above sea level (asl); for areas more than 500 m asl,
the restrictions on the FS are tightened further,

- the protection criteria of Recommendation ITU-R SA.1029 include a provision that the specified interference
threshold could be exceeded for up to 5% of measurement cells; since the interpretation of this provision is
unclear, SE20 could not implement it; furthermore, the provision was found unacceptable to the EESS experts in
SE20; it is recommended that ITU SG 7 study this issue; sharing studies to date have assumed that the
interference threshold will not be exceeded in any measurement cell.

A further study focussing on the band 55.22 - 55.78 GHz can be found in ERC Report 46.

2 INTRODUCTION

This report addresses the feasibility of sharing between the Fixed Service and the Earth Exploration-Satellite (passive)
Service in the frequency range 50.2 - 66 GHz. The ERC has previously published two reports on this subject: ERC
Report 17 on the band 57.2 - 58.2 GHz and ERC Report 19 on the band 54.25 - 57.2 GHz. In summary, the
conclusions of these reports are that in the upper band sharing presents no problem, whereas in the lower band
interference from fixed links to passive sensor satellites may occur, but these can be avoided through coordination or
restrictions on the fixed links. However, some concerns were expressed that these reports were not complete, and in
order to get a fuller understanding of the sharing conditions, the following topics were identified for further study:

* the reasons that these two services have to use shared bands
* the parameters assumed for the sensors
* the range of parameters possible for the FS
* the extent of the problem area within the band
* coordination methods
* the expected interference from in-direct propagation mechanisms
* cost implications of changing the frequency for FS and EESS
* satellite visibility statistics.

Further detailed study of the band 55.22 - 55.78 GHz can be found in ERC Report 46.
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3 ALLOCATIONS

In the frequency range 50.2 - 66 GHz there are two sub-bands where the FS and the EESS have co-primary allocations
in the Radio Regulations. These are:

* 50.2 - 50.4 GHz
* 54.25 - 58.2 GHz

CEPT Recommendation T/R 22-03 divides the band 54.25 - 58.2 GHz into two parts: 54.25 - 57.2 GHz is to be used
for local connections and supporting infrastructure for large-scale mobile networks and 57.2 - 58.2 GHz is intended
for low-power, short-range systems.

3.1 Use by the EESS

3.1.1 Why microwave sounding around 60 GHz?

Figure 1: Zenith atmospheric opacity due to oxygen and water vapour

Atmospheric temperature profiles are amongst the essential parameters which are routinely used by meteorological
services for operational weather forecasting, and by the scientific community involved in climate and
environmental monitoring studies. These applications do not generate direct commercial return. However, they
have an important impact on all economic activities, and contribute heavily to human  welfare and life conservation.

Atmospheric temperature profiles are currently obtained from spaceborne sounding instruments working in the
infrared spectrum and in the microwave spectrum (including oxygen absorption around 60 GHz).

As compared to IR techniques, the all-weather capability (the ability for a spaceborne sensor to "see" through most
clouds) is probably the most important feature that is offered by microwave techniques.
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This is fundamental for operational weather forecasting and atmospheric science applications, because more than 60%
of the Earth's surface, on average, is totally obscured by clouds, and only 5% of any 20x20 km spot (corresponding to
the typical spatial resolution of the IR sounders) is completely cloud-free. This situation severely hampers operations
of IR sounders, which have very little or no access to large, meteorologically active regions.

The next O2 absorption spectrum around 118 GHz has a lower potential due to its particular structure
(monochromatic, as compared to the rich multi-line structure around 60 GHz) and is more heavily affected by the
attenuation caused by atmospheric humidity, as it is shown on Figure 1. It appears that the 50/70 GHz band offers a
unique possibility to perform all-weather measurements of the vertical atmospheric temperature profiles from a
satellite's orbit.

3.1.2 Why the lower slope

The lower slope of the 60 GHz absorption peak is preferred over the upper slope, since the water vapour absorption is
greater on the upper slope. This results in sharper weighting functions at the lower slope, and thus better all weather
capabilities.

3.1.3 Current plans and instrumentation

Since 1978, the Earth Exploration-Satellite Service has used sections of the 50.2 - 58.2 GHz band for passive
microwave sounding of the atmosphere. These measurements are provided by the Microwave Sounding Unit (MSU)
instrument which is flown on the operational series of polar-orbiting weather satellites operated by NOAA. MSU is a
4 channel radiometer (see Table 1 for channel characteristics) with two channels in the frequency band under
discussion (at 54.76 - 55.16 GHz and 57.75 - 58.15 GHz).

On the basis of experience gained with the MSU data, NOAA is going to upgrade the microwave sounding capability
on its operational polar-orbiting satellites, expected in 1996. This capability will be provided by two new instruments:
the Advanced Microwave Sounding Unit - A (AMSU-A), for determining atmospheric temperature profiles, and the
Advanced Microwave Sounding Unit - B (AMSU-B), for determining atmospheric water vapour profiles. Together,
these two instruments have 20 microwave channels, of which 9 AMSU-A channels fall within the 54.25 - 58.2 GHz
band and one in the 50.2 - 50.4 GHz band.

Channel Frequency (GHz) Bandwidth (MHz) NE T (K)

1 50.3 ± 200 0.21

2 53.74 ± 200 0.22

3 54.96 ± 200 0.18

4 57.95 ± 200 0.21

Table 1: MSU channel characteristics

The channel characteristics of these instruments are given in Tables 2 and 3 respectively.
Figure 1 shows the atmospheric attenuation at microwave frequencies due to oxygen and water vapour together with
the 20 AMSU channel positions
Further upgrading of the microwave sounding capability will be achieved (in the 2005 timeframe) by the addition of
"stratospheric" channels in the frequency range 60.4 - 61.2 GHz. Such channels will increase the maximum height at
which the atmospheric temperature is retrieved from approximately 45 km to approximately 70 km. This technique
relies on a special interaction between the Earth's magnetic field and particular O2 absorption lines (Zeeman splitting).
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Channel Frequency (GHz) Bandwidth (MHz) NE T (K)

1 23.8           ± 135 0.2

2 31.4           ± 90 0.2

3 50.3           ± 90 0.3

4 52.8           ± 200 0.2

5 53.596       ± 200 0.2

6 54.4           ± 200 0.2

7 54.94         ± 200 0.2

8 55.5          ± 165 0.2

9-14 57.290344 ± 390 0.2

15 89             ± 3000 0.5

Additional stratospheric channels on upgraded AMSU-A

- 60.79267 ±   361 1.5

Table 2: AMSU-A channel characteristics

The service provided by the MSU instrument is likely to continue  until the end of 1997.

The first flight of the AMSU-A and AMSU-B instruments, on NOAA-K, is currently scheduled for 1995. They will be
operated continuously until about 2005, before being replaced with new improved instruments on a converged series
of US polar satellites.

Channel Frequency (GHz) Bandwidth (MHz) NE T (K)

16 89     ± 1500 0.3

17 150       ± 1500 0.6

18a 182.311 ± 250 0.6

18b 184.311 ± 250 0.6

19a 180.311 ± 500 0.6

19b 186.311 ± 500 0.6

20a 176.311 ± 1100 0.6

20b 190.311 ± 1100 0.0

Table 3: AMSU-B channel characteristics

The following other microwave sounding instruments must also be mentioned:

- The SSM/T (Special Sensor Microwave/Temperature) has 7 channels (50.5 to 58.4 GHz), and is currently
operated on the US defense meteorological polar satellites DMSP.

- The SSMIS is a new sensor under development for the DMSP series. It integrates into one unique instrument
microwave channels previously distributed amongst three distinct sensors: SSM/I (surface sensing), SSM/T
(atmospheric temperature profiles), and SSM/H (atmospheric humidity profiles). In particular, SSMIS has 13
channels within 50-61 GHz, and 3 channels around 183 GHz.

- The MTZA is a 10-channel (52 to 57 GHz) temperature sounder, which will be flown on the Russian
METEOR-3M (from 1996 onwards).
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3.1.4 Operations of the microwave temperature sounders

A network composed of two NOAA operational environmental satellites carrying identical payloads (Vis/IR imagers,
IR and MW sounders...), is currently being maintained and operated for the benefit of the whole international
meteorological and scientific communities.

Meteorological sensors have a wide field of view enabling each of them to yield two complete coverages per day of the
Earth and of its atmosphere.

The two satellites are in co-ordinated "morning" (around 7.30 a.m local time at equator's crossing) and "afternoon"
(around 1.30 p.m local time) sun-synchronous orbits respectively, in such a way that an almost 6-hourly repeat cycle is
achieved by the network (4 global coverages daily, for each type of sensor).

Instruments are operated permanently. Besides the real time data dissemination to regional or local users, global data
are stored on board the satellites, and dumped at regular intervals over a limited number of central ground data
acquisition stations at selected geographical positions in order to avoid losing any data. Typically, each user station can
acquire real-time data four times a day, during up to three successive satellite passages, depending on latitude.

From around 2000 onwards Europe, through EUMETSAT and ESA, will assume responsibility for the "morning"
orbit service. The European METOP satellite will occupy the "morning" orbit position (probably with a slightly later
local time at equator's crossing), and will replace the corresponding NOAA satellite which will be discontinued. The
remaining "afternoon" NOAA satellite and the "morning" METOP satellite will continue to carry essentially identical
meteorological core instruments.

In the long term, it can be anticipated that other meteorological satellites carrying similar instruments, for instance the
Russian METEOR-3M, will be integrated into this network. This is going to improve the number of observations per
day, and local times at equator's crossing will be adjusted accordingly.

3.1.5 Anticipated performance improvements

The need for improvements in the fields of climate understanding and modelling and weather forecast reliability and
resolution, the further scientific expertise which will be gained through utilization of AMSU-A data, and the
technological advances which can be anticipated in the fields of antenna and microwave technology, will render
possible further enhancements of microwave sounders, in particular

- optimized selection of channel frequencies,
- improved radiometric and geometric resolution,
- improved vertical resolution.

This is a usual and unavoidable iterative practice in the field of instrument design for sensing complex geophysical
parameters from a satellite's orbit, where improvements of instrument performance and scientific expertise are going
along two parallel paths in a kind of "push-pull" process.

The following assumptions were made, which introduce technological improvements as they can be anticipated
now, but which cannot be considered as absolute limits:

- Adoption of microwave low-noise pre-amplifiers  based, for instance, on HEMT's (High Electronic Mobility
Transistors). A receiver noise figure of 3dB can be expected. The receiver contribution to the system noise
temperature Ts is then 300K.

- Adoption of a radiometer lay-out which enables full optimization of the integration time τ (for instance a
"push-broom" technique). Optimum τ is taken as the full time that is necessary for the satellite to travel across the
dimension of a pixel: therefore, τ is directly proportional to the pixel's size and inversely proportional to the
satellite velocity. For instance τ=1s for a 7 km pixel (satellite velocity typically around 7 km/s).

- The improvement potential which can be achieved by using these techniques will be optimally distributed
amongst the parameters which characterize the performance of the instrument (ref.§4.1) in a way which is
difficult to appreciate to-day, but which is likely to improve the vertical resolution (sharper weighting functions
and increased number of channels, thus following the continuous improvement process of numerical weather
forecast models), and the horizontal resolution.
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This improved ("push-broom") sensor was introduced in 1993, in the ITU documentation. A sample of the achievable
performances (as an example), and the permissible interference levels are presented in Recommendations ITU-R
SA.515-2, ITU-R SA.1028, and ITU-R SA.1029 respectively, for the scanning sounder and for the "push-broom"
sounder.

3.2 Rationale behind the choice of the band 54.25 - 58.2 GHz for the Fixed Service

- Congestion of the spectrum: fixed services are already using a certain amount of the spectrum below 50 GHz.
Some new services are foreseen in the near future, for which the infrastruture is very dense and which have to be
deployed in very short periods of time. This is only achievable by using fixed links. The Fixed Service bands
below 50 GHz are used more and more for other services (like the Mobile Service) because of technical
characteristics. All of these arguments lead to the need to find more and more bands for the fixed service higher
in the spectrum (it is not an obligation to have exclusive bands for fixed services, sharing studies have to be made
to enforce spectrum efficiency).

- Propagation characteristics: the propagation characteristics have two impacts. The first is the length of the link,
the second is the reuse of the frequencies. The propagation characteristics of the 54.25-58.2 GHz band are
ideally suited to short range links. The anticipated developments in large-scale mobile networks -PCN, or other
networks based on micro cells- will require large numbers of links for the supporting infrastructure. The
propagation characteristics of the 54.25-58.2 GHz band give the possibility for reuse of frequencies a large
number of times in an area corresponding to a network coverage area. These physical characteristics (length of
hop and reuse of frequencies) are only available around the oxygen absorption lines.

- Shape of oxygen absorption curve: in the lower part of the oxygen absorption peak (below 60 GHz) the curve
presents a flatter slope compared to the upper part slope. Taking into account that duplex operation is necessary
for the envisaged infrastructure, that the minimum duplex separation economically achievable is within the range
1 - 1.5 GHz, that due to the duplex separation a tranche of 2 - 3 GHz band is necessary for one plan, that the
propagation between the lower and the upper part of the channelling plan has to differ as little as possible, the
flatter slope of the curve is more convenient.

- Medium and long term view: in 1990, the CEPT produced a Recommendation (T/R 22-03) giving some
guidance for the use of the frequency range 54.25-66 GHz. This long-term objective has already been used by
industry and standardization bodies to develop components, sets or standards to such a level that it is impossible
to change the frequency bands without losing years of work and large investments of money (ETSI is going to
finalise ETS 300 407 (around 55 GHz) and ETS 300 408 (around 58 GHz)).

4 SHARING PARAMETERS

4.1 Parameters for the passive sensors

4.1.1 Description of the principles of microwave sounding

Sounders are designed to accurately measure atmospheric parameters, and to optimize to the best vertical and
horizontal sampling of the atmosphere on a global basis. Their performances are characterized by the following main
parameters:

- The ground resolution (the "pixel", or the elementary measurement cell) which depends on antenna aperture
and on altitude. The pixel is typically the 3dB footprint of the antenna.

- The vertical resolution (represented by the sharpness of the weighting functions), which depends in
particular on the channel bandwidth B(Hz),
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- The radiometric resolution  ∆Te(K) represents the smallest scene temperature variation that the radiometer
can detect. It is expressed by the following equation (for a total-power radiometer):

Where:

* Ts(K) is the radiometer system noise temperature, which includes the receiver temperature and the antenna
contribution. The antenna contribution itself is essentially the temperature of the scene as seen by the main lobe
of the antenna,
* B(Hz) is the receiver (channel) bandwidth,
* τ(s) is the integration time, during which the elementary measurement cell is "seen" by the radiometer.

- The radiometer threshold ∆p(W), the smallest power variation that the instrument is able to detect, is expressed
by the equation:

Where k=1.38x10-23 J/K is the Boltzmann constant.

Note 1: The integration time τ allocated to each pixel is an important parameter. It depends basically on the size of
the pixel, on the velocity of the satellite, and because the instrument has to sample a great number of pixels within a
scanning line (cross-track or conical about nadir), on the efficiency of the scanning. The scanning efficiency is lower if
the pixels in a line are sampled in sequence (case of a mechanically scanned sensor); it is higher if all pixels in a line
are sampled simultaneously (case of a "push-broom" type instrument).

Note 2: The design of the instrument must realize a difficult trade-off between radiometric resolution (requiring a
wide channel bandwidth), and vertical resolution (requiring a narrow channel bandwidth). On AMSU-A, this
difficulty is overcome at the expense of hardware complexity in the following way:
Some channels are built with the sum of up to 4 narrow-band sub-channels carefully selected at, ideally, almost
identical absorption levels of the O2 spectrum, on the slopes of neighbouring absorption peaks.

4.1.2 Comparison between cross-track and conical push-broom sensors

For the push-broom instrument, two configurations can be envisaged:

- cross-track viewing in a plane normal to the satellite sub-track, extending ±50° on each side of the nadir
direction;

- conical wiewing around the nadir direction, providing a constant incidence angle of about 53° at the level of the
ground, corresponding to about 45° with respect to the nadir direction at the level of the satellite.

The conical viewing instrument has advantages in the domain of data processing. However, it provides uniformly
degraded data due to the high (constant) incidence angle. In addition, the swath width is limited by the geometry.

The cross-track viewing instrument provides on average better soundings and has a wider swath, thus achieving global
coverage. Therefore a cross-track viewing push-broom instrument is preferred.

It is expected to develop such an instrument within about 10 years.

τB
Ts=Te∆

TeBk=p ∆∆
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4.1.3 Interference threshold

Recommendation ITU-R SA.1029 gives interference criteria for passive remote sensing. It defines the harmful
interference level at the input of the radiometer, Ph (W), as

Based on the performance criteria given in Recommendation ITU-R SA.1028 this gives the interference threshold, in
the reference bandwidth 100 MHz:

* -161 dBW for a scanning sensor
* -166 dBW for a push-broom sensor

4.1.4 Other sensor parameters

A number of other parameters are needed for the sharing analysis. Typical values are given below for present and
future sounders.

Mechanical scanning Push-broom

Interference threshold -161 dBW/100 MHz -166 dBW/100 MHz
Bandwidth 400 MHz 15 MHz
Integration time 0.2 s 2.45 s
Antenna diameter 15 cm 45 cm
IFOV 3dB points 3.3° 1.1°
Cross-track width +/- 50° +/- 50°
Antenna gain 36 dBi 45 dBi
Side lobes - 10 dBi -10 dBi
Beam efficiency > 95% > 95 %
Radiometric resolution 0.3 K 0.1 K
Swath width 2300 km 2300 km
Pixel size (nadir) 49 km 16 km
Number of pixels/line 30 90
Orbit altitude (circular) 850 km 850 km
Orbit inclination (sun-synchronism) 98.8 ° 98.8 °
Year in service 1995 >2005

It should be noted that the push-broom sensor described above is not yet developed and thus the parameters described
will be subject to review and possible alteration, taking advantage in particular of the experience gained through the
exploitation of AMSU-A data.

4.2 Parameters for the fixed links

The important parameters for the sharing analysis are output power, antenna pattern, elevation angle, altitude and
density of links.

prETS 300 407 for the band 54.25 - 57.2 GHz specifies a maximum output power of 1 W and two alternative antenna
patterns: a standard pattern with 3 dBi far sidelobe gain and a high performance antenna with -10 dBi far sidelobe
gain. prETS 300 408 for the band 57.2 - 58.2 GHz specifies a maximum output power of 10 mW and a maximum
EIRP of 15 dBW. The maximum output power that is achievable with today's technology is around 0.1 W.  Equipment
operating in these bands are typically using output powers around -16 dBW. Future equipment can be expected to use
high performance antennas.

Typical elevation angles for these types of links will be very close to 0°.

Channel plans for these bands are given by draft new ITU-R Recommendation F.1100. The bandwidths range from 14

BT0.2k=P eh ∆



ERC REPORT 45
Page 9

MHz to 140 MHz.

Most fixed link locations will be at close to 0 km altitude. However, there are some large cities at higher altitudes.

4.3 Propagation

Interference from fixed links to passive sensors can be caused through different propagation mechanisms. The
following mechanisms have been identified.

* direct coupling
* reflections from roof tops
* scattering from vertical surfaces
* rain scattering
* tropospheric scattering
* re-radiation.

For all mechanisms the oxygen absorption plays an important part. Since this changes dramatically over the frequency
band under consideration, the band is split into nine sub-bands, and calculations are carried out at the absorption
minima (valley) of each sub-band. The oxygen absorption on the zenith path for each sub-band is given below in Table
4.

Slot no. Frequency band
(GHz)

Valley frequency
(GHz)

Oxygen absorption from
0 km (dB)

Oxygen absorption from 1
km (dB)

1 50.2 - 50.4 502 16 13

2 54.25 - 54.671 5425 153 128

3 54.671 - 55.221 5474 237 203

4 55.221 - 55.784 5531 370 322

5 55.784 - 56.255 5589 574 509

6 56.255 - 56.363 5629 864 785

7 56.363 - 56.968 5657 802 715

8 56.968 - 57.2 5719 988 883

9 57.2 - 58.2 5729 977 872

Table 4: Zenith oxygen absorption for specific sub-bands in the range 50-60 GHz
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5 SHARING ANALYSIS

5.1 Interference through direct coupling

5.1.1 Calculation of critical elevation

As the satellite orbits the Earth, its sensor antenna scans in the plane perpendicular to the satellite velocity - known as
"crosstrack" scanning.  Thus, the satellite sensor cuts a swath either side of the sub-satellite path (see Figure 2).

Figure 2: Relationship between satellite sensor and Fixed Service transmitter

Consider a fixed link transmitter at point F.  The transmitting antenna is raised to elevation angle e° and is aligned on
azimuth a° east of north.  As the satellite passes and the sensor scans to its limit, the sensor antenna and the fixed link
antenna are aligned boresight-to-boresight and a high level of interference can be received.  If the fixed link was
aligned to a different azimuth or a lower elevation, boresight-boresight alignment could not occur.  When planning a
fixed link it may be necessary to avoid the combination of this "critical azimuth" and "critical elevation".

This section describes a method to determine the critical elevation.

The geometry is shown in Figure 3.
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Figure 3: Geometrical relationship between satellite and Fixed Service transmitter

The maximum scan angle s is 50° and the satellite is at an altitude of 850 km.  The Earth radius R is taken as
6376 km.

°10.2 = b - 50 - 180 = c

km
sin
sin  1474 = 

s
cR = d

The critical elevation angle e is thus b - 90° = 29.8°.

Any elevation angle below this value will not allow boresight to boresight alignment.  Any elevation angle equal to or
above this value will allow boresight to boresight coupling only if the transmitting antenna is also on a critical azimuth.

Figure 4 shows a fixed link at 0° elevation causing interference by the zenith/nadir path (a).  The same fixed link
antenna is then repointed x° from the boresight-to-boresight path (b).  Referring to Figure 4, one can ask the question:-
Let Ia be the level of interference created on the zenith/nadir path (a).  Now referring to the boresight-to-boresight path
(b), at how many degrees off boresight-to-boresight alignment (angle x) does the level of interference equal Ia?

One can then conclude that an offset from the boresight-to-boresight path of greater than x° means that path (a) is the
worst case.  Conversely, an offset of less than x° means that path (b) is the worst case.
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Figure 4: Interference paths between a fixed link and a satellite

The answer to this question depends on: The level of absorption on each path (and hence the frequency) and the fixed
link antenna gain off-boresight.  Two examples are considered below.

Example 1: 54.25 GHz, High Performance Antenna
In this example the frequency is 54.25 GHz, and the antenna pattern is assumed to conform to Draft prETS 300 407
mask 2B - the high performance mask.  The fixed link is assumed to be at sea level and the transmitter power of 0
dBW is assumed.  The antenna gain 90° off-boresight is -10 dBi.  The free-space-loss for the zenith path is 185.7 dB
and the absorption is 15.3 dB. For interference path (b) the figures are 190.3 dB and 30.5 dB respectively.

Thus, the received level of interference for alignments (a) and (b) are

Ia = 0 - 10 - 185.7 - 15.3 + 45
Ia = -166.0 dBW

and
Ib = 0 + G - 190.3 - 30.5 + 45
Ib = -175.8 + G dBW

For Ib to exceed Ia, G must exceed (-166.0 - (-175.8) =) 9.8 dBi.  Referring to the high performance antenna mask, a
gain of 9.8 dBi occurs at approximately 10° off-boresight.  Thus we can conclude that such a fixed link with high
performance antenna, if aligned within approximately 10° of a boresight-to-boresight path, will cause greater
interference than the level resulting from the zenith/nadir path.

Thus, at this frequency, a limit of the fixed link elevation angle of (29.8 - 10) ≈ 20° will ensure that the greater
interference is always on the zenith/nadir path.

Example 2: 56 GHz, High Performance Antenna
This frequency is again within the band covered by Draft prETS 300 407 and again the high performance antenna is
considered. On path (a), free-space-loss is 186.0 dB and absorption is 59 dB.  On path (b), free-space loss is 190.6 dB
and the absorption is 117.7 dB.

Thus,
Ia = 0 - 10 - 186.0 - 59.0 + 45
Ia = -210 dBW

and
Ib = 0 + G - 190.6 - 117.7 + 45
Ib = -263.3 + G dBW

For Ib to exceed Ia, G must exceed (-210 - -263.3 =) 53.3 dBi.  To achieve an antenna of this gain would require an
unrealistically large antenna (approximately 1m diameter).  For frequencies above 56 GHz the oxygen absorption is
much greater and the calculated value of G would thus be even greater.  Thus, we can conclude that for the band 56 -
58.2 GHz, the worst case interference alignment is always the zenith/nadir path and that the boresight-to-boresight
path is irrelevant.

We can thus conclude that, for frequencies between 54.25 - 56 GHz, the zenith path will dominate if the elevation
angle of the fixed link is below 20°. For frequencies greater than 56 GHz, the zenith path is always the worst case.

5.1.2 Link budget calculations
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The interference threshold of §4.1.3 can be converted into maximum acceptable EIRP in the zenith direction. The
following formula is used:

Where:

* Ph(w) is the interference threshold at radiometer's input.
* l(m) is the wavelength.
* R(m) is the distance, which is the altitude of the satellite in the "zenith" case.
* Gr is the gain of the radiometer antenna.
* EIRP(w) is the total interferer power radiated in the zenith direction.
* Att is the total oxygen and water vapour attenuation at the frequency considered.

The maximum acceptable EIRP spectral density (dBW/Hz) is also a useful parameter, because it takes into account
possible differences of channel bandwidths.

Calculations are carried out using the parameters given in §4 and the assumptions that the fixed links are at an altitude
of 0 km and are using high performance antennas.
The results of the calculations are shown in Tables 5 and 6.

In Tables 5 and 6, the propagation loss is the free space loss. The O2 absorption ("Att" above) is equal to
-10log(eτ), where τ is the atmospheric opacity.

In order to meet the derived maximum EIRP limit, different combinations of output power and density of links can be
used. Some examples are given in Tables 5 and 6.

Since the results in Tables 5 and 6 assume that all fixed terminals are at 0 km altitude, some correction is needed for
terminals at significantly higher altitudes. A simple way to account for this would be to allow 3 dB less output power
for fixed terminals at altitudes above 500 m. This procedure is expected to ensure that the interference limit is not
exceeded for the same maximum density of fixed links at altitudes above 0 km.

It should be noted that fixed links operating in slot 9 may use standard antennas.

5.2 Interference by indirect propagation mechanisms

A number of indirect coupling mechanisms have been identified and listed in §4.3. Peliminary analysis has indicated
that the following mechanisms may be significant:

- reflection from roof tops,
- reflection from vertical walls,
- rain scatter.

Details are given in Annex 1.

More detailed analysis, involving measurements at around 50 GHz, has yet to be performed. It is anticipated that
results of these measurements will enable an estimate of the level and probability of indirect coupling to be made. It is
assumed that both the level and probability of indirect interference will be sufficiently low as to be acceptable to the
remote sensors. In the meantime, analysis is restricted to direct coupling.

It will be necessary to return to this topic when analysis is complete and when ITU-R SG 7 has re-investigated the
interference criteria for passive remote sensors.

6 OTHER CONSIDERATIONS
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6.1 Percentages of time and location

Interference thresholds are typically associatied with time and location percentages. The protection criteria of
Recommendation ITU-R SA.1029 include a provision that the specified interference threshold could be exceeded for
5% of measurement cells. SE20 discussed the meaning of this provision, in particular the definition of "measurement
cells", but were unable to interpret it. Several reservations were expressed by the EESS experts, who find this
provision unacceptable but irrelevant to the work of SE20.

The methodology used by SE20 is based on simple link budget calculations. The compatibility criterion has been that
the interfering power must not exceed the interference threshold, ie. there is no statistical analysis, and the concept of
time/location percentages does not need to be addressed.

This issue should urgently be studied by ITU Study Group 7.

6.2 Fulfilment of the mandate

This report has dealt with most of the issues in the SE20 mandate. However, the questions of cost implications of
changing the frequencies for FS and EESS and satellite visibility statistics have not been addressed.

The reason satellite visibility statistics have not been studied is explained by §6.1. The question of cost implications
was only to be studied "if required". The group did not feel this was the case.

7 CONCLUSIONS

The analysis in §5 has shown that sharing between the Fixed and Earth Exploration-Satellite (passive) Services is
possible in most of the bands allocated on a co-primary basis in the Radio Regulations. However, in some of the sub-
bands sharing is not possible or subject to constraints on the part of the Fixed Service. The conclusions are based on
the following assumptions:

- protection is given to future cross-track push-broom sensors, which are expected to come into operation around
2005,
- since scanning sensors require less stringent restrictions on the FS (see Table 5), the current and next
generation of sensors, eg. AMSU-A, would also be protected,
- high performance antennas are used by the fixed links,
- elevation angles are kept below 20° for fixed links operating below 56 GHz,
- the direct propagation mechanism dominates over the indirect mechanism,.
- interference by indirect mechanisms is acceptable to the passive sensor community.

Fixed services can use the shared bands as long as the EIRP limits derived in Table 5 are met. These limits are
expressed as maximum EIRP/pixel. It should be noted that a trade-off can be made between the output power and the
density of links. The conclusions slot by slot can be derived by considering likely operational scenarios of the fixed
links, eg. it is highly unlikely that more than 50 links within one pixel area (16 km diameter) would be possible.

In slots 1 and 2 (50.2 - 50.4 GHz and 54.25 - 54.67 GHz) sharing is not practicable within the 15 MHz bandwidth of a
push-broom sensor channel; the necessary power limitations for fixed links are too severe.

In slot 3 (54.67 - 55.22 GHz) sharing may be possible if a very limited number of fixed link terminals are used; low
output powers (around -16 dBW) would probably have to be used.

The necessary restrictions on fixed links in slot 4 (55.22 - 55.78 GHz) would allow the band to be used by the fixed
service, especially if low output powers were used. It would also be possible to use higher powers if a trade-off were
made with the number of links.

In slots 5 and above the Fixed Service can operate without any risk of causing interference to passive sensors.

Since the push-broom channel bandwidth is only 15 MHz, and a limited number of channels will be used, large parts
of the shared bands will not be used by temperature sounders. However, the meteorological community is not able
today to commit to specific measurement frequencies. WG FM should consider seeking information from the
meteorological community about the specific measurement frequencies needed for temperature sounding. If this
information becomes available, fixed links may be so assigned as to avoid use at or near these frequencies.
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Only in the event that such a possibility is found after detailed investigation to be unsustainable should WG FM
consider possible reallocations of bands to compensate the Fixed Service for the unusable parts of the primary bands
specified above. One option might be to allocate parts of the now exclusively passive bands 51.4 - 54.25 GHz, 58.2 -
59 GHz and 64 - 65 GHz to the fixed service. It should be noted, however, that these bands may not be as attractive for
the Fixed Service as the now allocated bands, eg. the high oxygen absorption in the band 58.2 - 59 GHz would make
this band difficult to use.

It is also recommended that ITU Study Group 7 study the interpretation and implementation of recommends 3 of Rec.
SA.1029 which states "that, in shared frequency bands, the interference levels given above can be exceeded for less
than 5% of measurement cells, within a sensor's service area in the case where the interference occurs randomly and
for less than 1% of measurement cells in the case the interference occurs systematically at same locations".

Fixed terminal max.EIRP to zenith (dBW)

Output power 0 dBW -10 -10 -10 -10 -10 -10 -10

Output power -16 dBW -26 -26 -26 -26 -26 -26 -26

Frequency slots (GHz) 50.2-50.4 54.25-54.67 54.67-55.22 55.22-55.78 55.78-56.26 56.26-56.36 56.36-56.96 56.96-57.2

Slot n° 1 2 3 4 5 6 7 8

Center frequency (GHz) 50.3 54.25 54.74 55.31 55.89 56.29 56.57 57.19

Wavelength (cm) 0.596 0.553 0.548 0.542 0.537 0.533 0.530 0.525

Altitude (km) 850 850 850 850 850 850 850 850

Propagation loss (dB) -185.1 -185.7 -185.8 -185.9 -186.0 -186.0 -186.1 -186.2

System noise temp. (K) 550 550 550 550 550 550 550 550

O2 absorp.0 km init. (dB) -1.6 -15.3 -23.7 -37.0 -57.4 -86.4 -80.2 -98.8

Nadir pixel diameter (km) 16 16 16 16 16 16 16 16

Integration time (s) 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45

Antenna gain (dBi) 45 45 45 45 45 45 45 45

Channel bandwidth (MHz) 15 15 15 15 15 15 15 15

Radiation sensitivity (K) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Radiation threshold (dBW) -167.3 -167.3 -167.3 -167.3 -167.3 -167.3 -167.3 -167.3

Interference threshold in
Channel bw (dBW)

-174.3 -174.3 -174.3 -174.3 -174.3 -174.3 -174.3 -174.3

Interference threshold in
100 MHz ref bw (dBW)

-166.0 -166.0 -166.0 -166.0 -166.0 -166.0 -166.0 -166.0

Interference spectral density
(dBW/Hz)

-246.0 -246.0 -246.0 -246.0 -246.0 -246.0 -246.0 -246.0

Max EIRP in EES
channel bw (dBW/pxl)

-33.0 -18.7 -10.2 3.2 23.7 52.7 46.6 65.3

Max EIRP spectral density
(dBW/Hz)

-104.8 -90.5 -82.0 -68.6 -48.1 -19.1 -25.2 -6.5

Max number of terminals/pixel

Output power 0 dBW,
14 MHz channel bw

0 1 19 2187 1737979 426928 31392236

Output power 0 dBW,
140 MHz channel bw

1 9 194 21870 17379791 4269278 313922363

Output power -16 dBW,
14 MHz channel bw

5 35 772 87066 69190196 16996301 1249747437

Output power -16 dBW,
140 MHz channel bw

50 353 7723 870663 691901957 169963012 12497474371

Table 5: Interference link budgets for push-broom microwave sounders
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Fixed terminal max.EIRP to zenith (dBW)

Output power 0 dBW -10 -10 -10 -10 -10 -10 -10

Output power -16 dBW -26 -26 -26 -26 -26 -26 -26

Frequency slots (GHz) 50.2-50.4 54.25-54.67 54.67-55.22 55.22-55.78 55.78-56.26 56.26-56.36 56.36-56.96 56.96-57.2

Slot n° 1 2 3 4 5 6 7 8

Center frequency (GHz) 50.3 54.25 54.74 55.31 55.89 56.29 56.57 57,19

Wavelength (cm) 0.596 0.553 0.548 0.542 0.537 0.533 0.530 0.525

Altitude (km) 850 850 850 850 850 850 850 850

Propagation loss (dB) -185.1 -185.7 -185.8 -185.9 -186.0 -186.0 -186.1 -186.2

System noise temp. (K) 2300 2300 2300 2300 2300 2300 2300 2300

O2 absorp.0 km init. (dB) -1.6 -15.3 -23.7 -37.0 -57.4 -86.4 -80.2 -98.8

Nadir pixel diameter (km) 49 49 49 49 49 49 49 49

Integration time (s) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Antenna gain (dBi) 36 36 36 36 36 36 36 36

Channel bandwidth (MHz) 400 400 400 400 400 400 400 400

Radiation sensitivity (K) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Radiation threshold (dBW) -148.5 -148.5 -148.5 -148.5 -148.5 -148.5 -148.5 -148.5

Interference threshold in
channel bw (dBW)

-155.5 -155.5 -155.5 -155.5 -155.5 -155.5 -155.5 -155.5

Interference threshold in
100 MHz ref bw (dBW)

-161.5 -161.5 -161.5 -161.5 -161.5 -161.5 -161.5 -161.5

Interference spectral density
(dBW/Hz)

-241.5 -241.5 -241.5 -241.5 -241.5 -241.5 -241.5 -241.5

Max EIRP in EES
channel bw (dBW/pxl):

-4.5 9.8 18.3 31.7 52.2 81.2 75.1 93.8

Max EIRP spectral density
(dBW/Hz):

-90.5 -76.3 -67.8 -54.4 -33.8 -4.8 -10.9 7.7

Max number of terminals/pixel

Output power 0 dBW,
14 MHz channel bw

3 23 514 57927 46033758 11308013 831484445

Output power 0 dBW,
140 MHz channel bw

33 235 5138 579271 460337583 113080129 8314844450

Output power -16 dBW,
14 MHz channel bw

132 935 20456 2306121 1832636927 450180100 33101991976

Output power -16 dBW,
140 MHz channel bw

1321 9350 204560 23061213 18326369274 4501801001 331019919756

Table 6: Interference link budgets for scanning microwave sounders
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Annex 1

Preliminary analysis of indirect propagation mechanisms

A.1  Interference through reflections from roof tops

Although terrestrial link inclinations greater than say 25° can be viewed as unlikely, reflection by surfaces illuminated
by a link transmitter is a more probable hazard.  The most obvious scenario is reflection from pitched roofs from
radiation which spills beyond a link terminal, as illustrated below.

Figure 1: Reflections of fixed link transmissions from a pitched roof

It should be noted that at 50 GHz, even a modest-sized roof will provide an ample Fresnel zone for reflection.  The
question of reflection coefficient is more variable.  A metal roof will in general have a reflection coefficient close to
unity, but fortunately such roofs are normally corrugated, reducing the area available for reflection in a given direction.
Also, no roof will be truly flat compared with the millimetric wavelength.

Dielectric surfaces also reflect, and glass roofs in particular are likely to be smooth enough to provide good
specular reflection.  Although it is not clear how representative such figures are for non-metal roofs,
calculations of reflection coefficient were run for  ε = 30 and σ = 0.001 S/m:
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with the following results for the amplitude of the vertical and horizontally-polarised reflection coefficients:

Figure 2: Reflection amplitudes for vertical and horizontally polarised signals

This shows that horizontally-polarised terrestrial links represent a more serious hazard than vertically polarised
installations.  However, the position of the Bragg-angle minimum for vertical polarisation changes significantly for
different values of conductivity, σ, and dielectric roofs will reflect well over certain ranges of small reflection angles.
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Not all 50 GHz links will illuminate a suitable surface for reflecting energy upwards at more than 30°, and of those
that do, not all will point in the aximuthal direction of the satellite.  The following is an attempt to estimate the
probabilities involved:

Probability
Illumination of suitable surface for reflection to a
vertical angle of  30° or more.  Say 1 link in 20 0.05

Any given azimuthal angle alignment: for terrestrial source with
a 2° beamwidth, probability is 2 / 360° 0.005

Thus probability of unfavourable combination: 0.00025
or 1 case in 3,600 links.

The overall estimate of risk now depends on the orbital and scanning characteristics of the satellite:

a) The satellite looks at every point of the earth's surface for a particular azimuthal angle and a low vertical angle: in
time it will see interference from 1 link in 3,600.

b) The satellite looks at every point for a given azimuth but not necessarily at a low vertical angle: the risk will be
less than a), since some links will not have beams reflected to high enough angles to be seen by the satellite;

c) The satellite looks at every point of the earth's surface at a low vertical angle for more than one azimuthal
direction: the risk will be greater than a).  In particular, if the satellite looks at every point on the ground at
reciprocal directions, as seems probable, then the risk is 4 times a), ie., 1 in 900 links.

Many of the offending terrestrial links will illuminate a reflecting roof with only part of the beamwidth.  This results in
a reflected beam occupying a smaller solid-angle than the original, reducing the probability of intersection with the
satellite.  The above probabilistic assessment suggests that 1 link in 20 illuminates a roof with its full beam, in practice
there would be a spectrum of more or less partial illuminations.

Although in theory both metal and non-metal roofs can provide reflection coefficients close to unity, implying a loss of
only a few dB or less, the presence of corrugations and non-flatness will result in substantially less perfect reflections. 
An estimate is that where the geometry otherwise favours reflection, a net loss due to the reflection process of 5 dB for
horizontal polarisation and 10 dB for vertical could be taken as working assumptions. However, since a proportion of
this loss will be due to the reflected beam being broken into several near-parallel beams by non-flatness, in practice
the beam dispersions due to reflection will make interference more probable, but at a lower level than for perfect
reflection.  Thus as a broad estimate, based on option c) above, the reflection hazard is estimated as:

Horizontal polarisation: 1 link in 1,000 at 10 dB below main-main coupling;

Vertical polarisation: 1 link in 1,000 at 15 dB below main-main coupling.

The general effect of such reflections will be to produce point-source of interference with pronounced directivity.
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A.2  Interference through scattering from vertical surfaces

If one terminal of a 50 GHz fixed link is installed on the vertical wall of a building, or similar structure, diffuse
scattering is very likely to occur where the incident energy illuminates it.  The surface will approximate to a Lambert
surface,

Figure 3: Scattering from vertical surfaces

with a directional component in the scattering proportional to cos (a), as illustrated in Figure 3.

The equivalent EIRP in the direction of the satellite is theoretically given by:

EIRP  =  6.0  +  Wr  + 10.log( σ)  +  10.log{cos(a)}                 dB(W)

where:
Wr = Total power illuminating the surface in dB(W)
σ = Fraction of incident energy scattered

Recent measurements at 38 GHz show a distribution which does not match the above equation.

Little data is available on the proportion of energy scattered by typical building surfaces.  Estimating the value as 0.25
for illustration, at an elevation of 30° the equivalent EIRP will be given by:

EIRP30   =   Wr  -  0.6 dB(W)

Calculations show that an individual link with 1W radiated power can exceed the EIRP limit by about 2 dB, if a
suitable vertical surface is illuminated, this surface is not screened by other buildings, and if the azimuthal orientation
is appropriate.  The nature of the source will be physically small and without pronounced directivity, although the
hazard will be greater for more slanting paths, and will reduce for satellite scanning angles approaching the vertical. 
On the other hand, scattering surfaces are more likely to be screened by other buildings for more slanting paths. 

A.3  Interference through rain scattering

To a first order of approximation, rain scattering is isotropic.  In fact a minimum occurs at 90° to the original direction,
with more scattering at smaller angles, both forwards and backwards. Little data is available at 50 GHz, but the
principal rain attenuation mechanism for a fixed link is scattering rather than absorption.
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At 50 MHz links will suffer severe rain fades, with fade margins up to 10 dB for 99.9% availability and more for
higher-reliability links.  At a fade of 10 dB, 90% of the radiated power has been taken out of the main beam, and at 50
GHz, well over half of this will be scattered rather than absorbed, the scattering predominately occuring within 1 km of
the transmitter.

Thus the effect of rain scatter will be to turn a 50 GHz horizontal terrestrial link transmitter into an approximately
isotropic source, with an absorption loss of perhaps 2 dB.  If the radiated power is 1 W, the EIRP becomes
approximately -2 dB(W).  Calculations show that a single link will be at approximately the level likely to cause
interference, particularly for low values of angle A.

However, the scattered energy will suffer further rain absorption.  The extent of this depends upon the position of the
link in relation to cloud structure.  Heavy rain normally falls from a "melting layer", which is a relatively thin horizontal
formation of melting ice near the top of the cloud.  The melting layer height can vary from almost ground level to
several km.  Energy scattered from a link just below the melting layer would suffer little further absorption over the
slant path to the satellite, although a minimum of several dB would be a safe assumption.  For a link several km below
the melting layer, significantly more rain absorption will occur.

There will thus be a time variability in this mechanism, varying as the height of the melting layer during rainy weather.
 In general in temperate climates the melting layer is lowest during the winter.  Rain scatter will transform each link
into a diffuse source of energy, with a horizontal extent of the order of 1 km, and without pronounced directional
effects.  For 1W link transmitters each individual link is likely to be from about 4 to about 20 dB below the level
necessary to cause interference.

A.4  Interference through tropospheric scattering

Variations in the refractive index of the atmosphere cause scattering which can be exploited to provide communication
via transhorizon links.  In a deliberate troposcatter link, a relatively large common volume is illuminated, as defined by
the beams of the transmitting and receiving antennas.

The mechanism has most effect at small scattering angles.  The current ITU-R model for the basic transmission loss
for a tropo path, Rec.PN.452-5 Equation (10a), has a term 0.573θ, where θ is the total scattering angle in milliradians.
 This is equivalent to about 10 dB per degree.  To scatter through 30° will thus cause a large excess loss.  The
effective common volume for a 50 GHz terrestrial link will also be comparatively small.  For these reasons it is
thought that the mechanism can be neglected.

A.5  Interference through re-radiation

Energy absorbed by the oxygen near the fixed link transmitter is re-radiated. The sensor receives an artificially high
level of energy and interprets this as a higher than actual temperature.

This mechanism is difficult to analyse but information received from NOAA suggests that this "should not be a
problem".


