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 EXECUTIVE SUMMARY 

Emission limits for 5G stations using active antenna systems (AAS) are often defined as total radiated power 
(TRP). In order to enforce these limits, as well as for other purposes such as interference investigation and 
cross-border coordination, administrations need to measure emissions from 5G AAS stations. However, AAS 
usually do not provide a test point which could be used to make conducted measurements. It is therefore 
necessary to measure the emissions (in-band as well as unwanted) over the air, which is especially challenging 
due to the dynamic properties of 5G signals and the fact that antenna characteristics and directions are not 
fixed. 

This Report summarises the current knowledge and suggests possible ways to measure in-band emissions of 
5G AAS base stations over the air, including methods to derive e.i.r.p. and TRP. Specific examples of practical 
measurements are described which may serve as proofs of concept for the following measurement methods: 
 Ground-based measurement of the broadcast and synchronisation signal in normal operating mode of the 

base station; 
 Airborne measurement of the broadcast and synchronisation signal as well as the traffic signals with a 

drone while the base station is in a test mode, over a static beam; 
 Ground-based measurement by attracting a traffic beam with an active user equipment while the base 

station is in normal operating mode. 

Experience from the example field measurements and simulation above has shown that the concepts work 
practically and may provide results with reasonable accuracy. However, there is no single measurement 
method to be recommended. The most appropriate method in a specific case depends on  
 the purpose of the measurement and required parameter (e. g. field strength, e.i.r.p. or TRP);  
 possible modes of the base station (normal operation or test mode/test signal);  
 available information on certain base station parameters (antenna directivity, beamset and pattern); 
 local restrictions (surrounding environment, buildings, legal constraints regarding drone operation); 
 available measurement equipment (analysers, decoding receivers/loggers, drones). 

The possibilities to measure unwanted emissions are further limited, among others, by the fact that for 
enforcement of limits the base station needs to transmit at full power and bandwidth, which cannot be 
guaranteed during normal operation. However, a suitable test mode or test signal is currently not defined in 
the 3GPP specifications. Furthermore, the antenna gain and patterns in the unwanted frequency domains are 
not known, but this knowledge is one of the prerequisites of most measurement methods described. Therefore, 
this Report is limited to in-band measurements only. 
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Abbreviation Explanation 

3GPP 3rd Generation Partnership Project 

AAS Active Antenna System 

AAU Active Array Unit 

BS Base Station 

CATR Compact Antenna Test Range 

CEPT European Conference of Postal and Telecommunications Administrations 

EC European Commission 

ECC Electronic Communications Committee 

e.i.r.p. Equivalent Isotropically Radiated Power 

ETSI European Telecommunications Standards Institute 

EU European Union 

FSL Free Space Loss 

GNSS Global Navigation Satellite System (GPS/BeiDou/Galileo/GLONASS) 

HPBW Half Power Beamwidth 

LoS Line of Sight 

NR New Radio 

OFDM Orthogonal Frequency Division Multiplexing 

OTA Over-the-Air 

RB Resource Block 

RBW Resolution Bandwidth 

RE Resource Element 

RF Radio Frequency 

RPE Radiated Pattern Envelope 

RSRP Reference Signal Received Power 

SSB Synchronisation Signal Block 

TA Test Antenna 

TRP Total Radiated Power 

UE User Equipment 



  ECC REPORT 345 - Page 5 

 

 

 INTRODUCTION 

There are occasions where administrations need to perform over-the-air measurements of radio devices such 
as mobile base stations deployed in the field. This can be for a variety of reasons including for example as 
detailed in section 3.2: 
 Checking that the radio device meets its licence conditions; 
 Part of interference investigations; 
 Cross-border coordination. 
New 5G Active Antenna Systems (AAS) can employ dynamic beamforming with limits prescribed in Total 
Radiated Power (TRP). This makes it more challenging to perform off-air measurements than for older 
technologies, where the beam was static, and the limits were prescribed in e.i.r.p. 

Over-the-air (OTA) field measurements are separate from the issue of conformance testing which is normally 
carried out in a laboratory in accordance with relevant ETSI Harmonised Standards.  

This ECC Report outlines techniques and methodologies to determine or estimate TRP (with equivalent 
measurement metrics) by field measurements for in-band emissions of 5G AAS, in order to facilitate 
administrations checking compliance with national regulations and performing interference investigations. 

The power limits for base stations equipped with AAS are often prescribed in TRP that is defined as the integral 
of the power transmitted in different directions over the entire radiation sphere. 

OTA measurements in the field are generally complex due to uncertainties caused by real life variables. 
Dynamic performance of AAS depends on factors such as: 
 Real traffic condition (Number of active UEs, traffic load, etc); 
 Propagation environment (multipath, weather, etc); 
 Dynamic adjustment of traffic beam characteristics and direction: 
 Relevant 5G BS characteristics. 

The possibilities to measure unwanted emissions are further limited by, among others, the fact that for 
enforcement of limits the base station needs to transmit at full power and bandwidth, which cannot be 
guaranteed during normal operation. However, a suitable test mode or test signal is currently not defined in 
the 3GPP specifications. Furthermore, the antenna gain and patterns in the unwanted frequency domains are 
not known, but this knowledge is one of the prerequisites of most measurement methods described in this 
Report. 

Therefore, this Report is limited to in-band measurements only. 
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 DEFINITIONS 
 

Term Definition 

Beamwidth The beamwidth, or “half-power beamwidth” HPBW is defined as the angular region 
where the radiated power density is 3 dB below the power density in the direction 
of maximum gain.  

Directivity The directivity of an antenna in a certain direction is the power density of the antenna 
in this direction of radiation in three-dimensional space divided by its average power 
density. If the direction is not given, then the direction of maximum radiation is 
implied. 

Gain The gain of an antenna is the ability to convert the input power into radio waves in a 
particular direction. Gain is the combination of the directivity and the electrical 
efficiency of the antenna. Electrical efficiency of an antenna takes into account the 
matching between the feed line and antenna as well as internal losses in the 
antenna. Hence, gain is always less than the directivity because most of the 
antennas have some internal losses. 
The antenna gain is often given as dB relative to an isotropic antenna, and 
abbreviated dBi.  

e.i.r.p. e.i.r.p. is the total power that would have to be radiated by an isotropic antenna to 
give the same radiation intensity (signal strength or power flux density) as the actual 
source antenna at a distant receiver located in any given direction. Its value is the 
transmitter power (in logarithmic units) plus the antenna gain in dBi.  

TRP TRP is defined as the integral of the power radiated by an antenna array system in 
different directions over the entire radiation sphere. TRP is equal to the total 
conducted power input into the antenna array system less any losses in the antenna 
array system. 

 

Figure 1: Visual representation of half-power beamwidth (HPBW) 
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* Ptx_tot – Total transmitted power, Prx_tot – Total received power, Ltx – Transmitting antenna losses, Lrx – Receiving antenna losses, 

D – Directivity, Dtx – Transmitting antenna directivity, Drx – Receiving antenna directivity, FSL – Free Space Loss 

Figure 2: Illustration of directivity, e.i.r.p. and TRP 
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 OUTLINE OF FRAMEWORK AND REQUIREMENTS OF MEASURING 5G AAS IN THE FIELD 

3.1 5G AAS IN EUROPEAN REGULATION 

Some examples of ECC and EC Decisions where AAS requirements have been added in terms of TRP are as 
follows: 

Table 1: Examples of ECC and EC Decisions which include TRP requirements for AAS 

ECC Deliverable Corresponding EC 
deliverable Frequency band 

Date TRP 
requirements 

included for AAS 

ECC Decision (05)05 [1] Decision (EU) 2020/636 [2] 2500-2690 MHz July 2019 

ECC Decision (06)01 [3] Decision (EU) 2020/667 [4] 1920-1980 MHz and 2110-
2170 MHz March 2019 

ECC Decision (11)06 [5] Decision (EU) 2019/235 [6] 3400-3800 MHz October 2018 

ECC Decision (18)06 [7] Decision (EU) 2020/590 [8] 24.25-27.5 GHz October 2018 

ECC Decision (06)13 [18] Decision (EU) 2022/173 [19] 17101785/18051880 MHz  March 2022 

In addition, in ERC Recommendation 74-01, “Unwanted emissions in the spurious domain” (amended May 
2019), [9] TRP is defined as the metric for unwanted emission for terminals and base stations using AAS and 
beamforming with integrated antennas (see Annex 2, Table 6, Note 6). It should be noted that some of the 
above-mentioned deliverables refer to unwanted emissions while this Report focuses on in-band. 

3.2 SCOPE AND LIMITATIONS OF MEASUREMENTS IN THE FIELD 

Administrations need to measure emissions from transmitters for various reasons. This includes the need to 
measure emissions from 5G base stations using active antenna systems (AAS). For obvious reasons, it is not 
possible to measure a transmitter deployed in the field in a controlled environment. Furthermore, 5G base 
stations using AAS usually do not provide a test point allowing conducted measurements. Therefore, all 
measurements have to be performed as radiated measurements in the field.  

In the field, radiated measurements can only measure the field strength at the measurement location. All 
methods described in Section 4 are based on this principle. This process is already subject to influences from 
propagation and reflections. Additional uncertainties are introduced for those methods aiming to determine the 
e.i.r.p. and TRP, because they include additional calculation processes that often depend on certain 
assumptions and may even be dependent on the availability of certain information from external sources (e.g. 
antenna characteristics, beam directions).  
For the above reasons, field measurements cannot be expected to provide the same accuracy and 
reproducibility than measurements in a controlled environment as assumed by the 3GPP specifications and 
ETSI standards. The measurement methods described in Section 4 for the different purposes are associated 
with uncertainties that have to be considered carefully before making conclusions about the compliance or 
non-compliance with the applicable limits especially for airborne measurements (further information could be 
found in ITU-R Report SM.2056 [15]). Often the more complex methods result in more accurate results 
whereas in some cases the accuracy of the simpler method may be sufficient. The desired accuracy of the 
result should be an important criterion when selecting a method for a specific measurement task. 

The following sub-sections describe the main situations in which measurements of 5G AAS base stations are 
necessary. 
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3.2.1 Verification of licence conditions for 5G AAS base stations 

The conditions of a licence to operate a base station generally include limits on the transmitter power and also 
require compliance with the relevant harmonised standard based on 3GPP specifications. 3GPP specifications 
contain limits for the unwanted emissions in both OoB and spurious domain. Limits for the transmitter power 
are either defined as e.i.r.p. or as TRP for AAS, while limits for the unwanted emissions are generally defined 
as TRP for AAS. 

As mentioned earlier, this Report is limited to in-band measurements. 

3.2.2 Interference investigation 

A 5G AAS base station can cause harmful interference in two ways: 
 due to on-channel RF level; or 
 due to unwanted emissions that fall inside the receive channel of the victim receiver.  

As mentioned earlier, this Report is limited to in-band measurements, which would apply to the first case. The 
general procedure is to measure the field strength of the 5G AAS base station at the location of the interfered 
receiver. This value may then be compared with the requirements of the receiver regarding 
resilience/selectivity, or calculated back to e.i.r.p. or TRP for comparison with the assigned power of the 5G 
AAS station. 

3.2.3 Other measurement scenarios  

Since base stations for public mobile networks are also placed near borders, coordination with networks in 
neighbouring countries is required. In this process, the maximum field strength either directly at the border or 
a certain distance away from the border is negotiated. Measurements may have to be performed to check 
compliance with bilateral or multilateral agreements. 

There are also other scenarios in relation to measuring emissions from 5G AAS in the field, including coverage 
and EMF measurements. However these measurements are outside the scope of this Report. 
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 MEASUREMENTS, REQUIREMENTS AND METHODS 

4.1 DETERMINATION OF TRP 

In CEPT Report 67 [10], TRP is defined as the integral of the power radiated by an antenna array system in 
different directions over the entire radiation sphere: 

𝑇𝑇𝑇𝑇𝑇𝑇 =
1

4𝜋𝜋
� �𝑃𝑃(𝜃𝜃, 𝜑𝜑) sin(𝜃𝜃) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝜋𝜋

0

2𝜋𝜋

0

 
(1) 

Where: 
 θ: elevation angle in radians 
 φ: azimuth angle in radians 
 P(θ,φ): Power radiated by an antenna array system in the direction (θ,φ).  

An example of P(θ,φ) is shown in Figure 3. 

 

Figure 3: 3D polar plot of an 8x8 antenna array radiation pattern 

The TRP is also equal to the transmitter power supplied to the antenna minus any losses. Its value cannot be 
measured directly. In practice, the field strength E at a certain location (or multiple locations) is measured, from 
which the TRP may be calculated under certain conditions (see section 4.4.3 for details).  

4.2 KEY FUNCTIONALITY OF 5G NR AAS BASE STATIONS 

5G NR (a specific radio access technology of 5G as defined in relevant 3GPP specifications) uses OFDM 
modulation with flexible RF parameters such as number of subcarriers, symbol duration and bandwidth. 
Information transmitted from the base station is separated into broadcast, synchronisation and traffic channels. 

All data transmission is organised in resource blocks (RB) which are organised by a scheduler. 

Synchronisation and broadcast blocks are always transmitted once per frame and occupy only part of the total 
channel bandwidth. This block consists of up to 240 consecutive subcarriers and is three to four OFDM 
symbols long. 
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Resource blocks for user traffic are only switched on when required. The scheduler decides how many RBs 
are assigned to a user and for how long. They may occupy a smaller portion of the available RBs for a longer 
time, or the full bandwidth for a shorter time. This results in a highly dynamic spectrum in both time and 
frequency domain, which heavily depends on user traffic and configuration of the base station. 

In addition, a specific issue of AAS is beamforming. This feature allows the creation of dynamic radiation 
patterns with different beamwidths and beam directions. In 5G NR, broadcast and synchronisation blocks are 
transmitted via so-called SSB (synchronisation signal block) beams, whereas traffic blocks are transmitted via 
traffic beams. SSB and traffic beams usually have different beamwidths and spatial coverage ranges. 

 

Figure 4: Example of different beam characteristics of a 5G AAS base station 

Configuration of the SSB beams is variable. A station may be configured to transmit only one broadcast block 
per frame over a beam with 120° opening angle, or up to 8 SSB beams transmitted in sequence over narrow 
beams in different pre-defined and fixed directions. The following figure is an example of a station configured 
for 7 SSBs, numbered Beam0 to Beam6. 

 

Figure 5: Spatial distribution and patterns of a 5G NR BS with 7 SSB beams 
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Although all SSBs are transmitted with equal power, a time domain measurement (zero span) of such a BS, 
taken at a fixed location in the direction of Beam4, may appear as follows: 

 

Figure 6: Example of the power vs. time received from the SSBs at a fixed location 

Traffic beams of a 5G AAS base stations can be focussed in different directions which makes it possible to 
“follow” (i.e. select most suitable of pre-defined beams to provide best experience to) a moving user (beam 
steering). This allows concentration of the available transmit power in a certain direction as necessary. It is 
even possible to create multiple beams in different directions simultaneously as shown in the following figure. 

 

Figure 7: Beam steering 

The dynamic spectral and time behaviour of a 5G NR base station and the variable beamwidth and directions 
of AAS make measurements of maximum field strengths very complex and challenging.  

4.3 MEASUREMENT SIGNAL AND BASE STATION REQUIREMENTS 

Over-the-air measurements of 5G AAS base stations can principally be based on measurements of the SSB 
beam and/or traffic beam. Depending on the purpose of the measurement, the available equipment, operation 
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mode of the base station, and local constraints regarding possible measurement locations, the decision for a 
specific signal/beam to be measured may have different advantages and disadvantages. 

Table 2: Measured signals and conditions 

Measured signal/beam Measurement condition 

Broadcast signal/SSB Normal operation 

Traffic signal/traffic beam(s) 
a) Provoking traffic and attracting a traffic beam 

 
b) Test mode of the base station simulating traffic 

Since the SSB is always transmitted, it can be measured during normal operation of the base station. In case 
it is only required to determine the actual signal level (no estimation of maximum possible level), it may even 
be sufficient to measure the traffic signals during normal operation, possibly over longer averaging times. 

If measurement of the traffic signal by attracting a traffic beam (for example with a UE in the direction of the 
measurement location and downloading data) aims to determine maximum e.i.r.p. or TRP, it may be required 
that no other users are active during the measurement. If this can be guaranteed, the measurement may also 
be possible under normal operating conditions of the base station. 

The most reliable and reproducible method to determine maximum e.i.r.p. or TRP may be to set the base 
station into a test mode where maximum power is transmitted in a defined direction. It should be noted that 
currently there is no requirement for a specific test mode defined in 3GPP. Some vendors of 5G AAS base 
stations may provide the possibility of test modes, but knowledge of the spectral, time domain and spatial 
properties of these test signals is required to obtain the required result. 

4.4 MEASUREMENT APPROACHES AND PARAMETERS 

Depending on the purpose of the measurement, and relevant regulations, the final parameter to be determined 
may be either field strength, e.i.r.p. or TRP. While the primary value measured directly is the received power 
or power density, the other values may be calculated under certain conditions. The following table lists required 
measurement locations, approaches and a-priori information. 

Table 3: Measurement modes and required information 

Required 
parameter 

Measurement 
location(s) Required a-priori information 

Field 
strength Fixed None 

e.i.r.p. 
Fixed (ground-based) or 
variable (possibly 
airborne/drone) 

a) Antenna gain  
(if measurement location can be assured to be in the 
main beam direction)  
 

b) Antenna pattern  
(if measurement location may be outside the main 
beam direction) 

TRP 
Variable at least over part 
of the sphere (possibly 
airborne/drone) 

None 
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4.4.1 Field strength determination 

Primarily, the parameter measured directly is the power at the input of the measurement receiver. Because 
the normal 5G NR signals are pulsed, the average burst power has to be measured. This is the RMS power 
only during a burst, excluding pauses.  

If the SSB signal is measured with a spectrum analyser or standard measurement receiver, the measurement 
has to be in the time domain (zero span) and limited in time to the (strongest) burst only. The result is a display 
as in Figure 6. For spectrum analysers, a specific measurement mode is needed. This is sometimes called 
“time domain power” or “gated trigger”. 

Often the measurement is taken in a bandwidth that is smaller than the signal to be measured. For spectrum 
analysers, the measurement bandwidth is the RBW used which is generally not sufficient to cover the whole 
5G channel, and sometimes even narrower than the SSB. If dedicated 5G measurement equipment is used, 
the received power is often shown in dBm per resource block. This level corresponds to a measurement 
bandwidth that is equal to the subcarrier spacing.  

From a measurement with reduced bandwidth, the total signal level can be calculated with: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 10𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� (2) 

Where: 
 Psignal: Total level of the signal; 
 Pmeas: Level measured in measurement bandwidth; 
 measBW: Measurement bandwidth; 
 signalBW: Signal bandwidth. 

Using the antenna factor of the measurement antenna, the corresponding field strength can be calculated from 
the received level using: 

𝐸𝐸 �dBµ
V
m
� = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[dBm] + 𝐾𝐾[

dBm
m

] (3) 

Where: 
 E:  Field strength of the signal at measurement location; 
 Psignal: Total level of the signal; 
 K:  Antenna factor of the measurement antenna. 

If the maximum possible field strength from the 5G base station is to be determined, and the SSB is measured, 
it may be estimated by using equation (2), but only under the following conditions: 
 The measurement location is in the main lobe of both SSB and traffic beam; 
 The e.i.r.p. of SSB resource blocks and traffic resource blocks is assumed to be equal. 

While the first assumption may be assured by varying the measurement location, the second assumption 
requires information from the operator or base station manufacturer. If this information is not available, the 
traffic beam has to be measured for reliable results. 

4.4.2 e.i.r.p. determination 

The e.i.r.p. in the direction of the measurement location can be calculated as follows [16]: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸[dBW] = 𝐸𝐸 �dBµ
V
m
� + 20 𝑙𝑙𝑙𝑙𝑙𝑙 10(𝑟𝑟[km]) − 74.8 dB (4) 
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Where: 
 r: Distance between transmit antenna and measurement location 

Often, the maximum e.i.r.p. is required. For directional antennas, this corresponds to the angle of maximum 
antenna gain only. However, e.i.r.p. can be calculated for any angle using the formula above. 

4.4.3 TRP determination 

In this Report, in-band measurements will be discussed. In this case the directivity of the transmit antenna: 

𝐷𝐷(𝜃𝜃, 𝜙𝜙) =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃, 𝜙𝜙)

𝑇𝑇𝑇𝑇𝑇𝑇
 

(5) 

is assumed to be known or directly related to the beamwidth of the radiation pattern. The latter form implies: 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃,𝜙𝜙)
𝐷𝐷(𝜃𝜃, 𝜙𝜙)  

(6) 

Typically the direction of peak directivity, and peak e.i.r.p., is used. 

The following relation is used to relate directivity to beamwidth [17]: 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = max[𝐷𝐷(𝜃𝜃, 𝜙𝜙)] =
32400

𝐻𝐻𝐻𝐻𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝑊𝑊𝐻𝐻
 (7) 

HPBWx denotes vertical and horizontal half power beamwidth, respectively. Note that these beamwidths 
should be measured from the coordinate origin which implies a scaling factor if the horizontal beamwidth is 
measured in a conical cut 𝜃𝜃 = 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 using angles (𝜙𝜙) in the cut, i.e.: 

𝐻𝐻𝐻𝐻𝐻𝐻𝑊𝑊𝐻𝐻 = sin 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 𝐻𝐻𝐻𝐻𝐻𝐻𝑊𝑊𝜙𝜙 (8) 

Here, 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 is the theta angle at which the horizontal conical cut is taken. Note also that the validity of Eq. (7) is 
based on a pattern that has only one major lobe. Any minor lobes, if present, should be of very low intensity. 

To achieve an absolutely accurate value for the TRP, the whole sphere around the transmit antenna would 
have to be measured. However, this is normally not possible in practice. 3GPP TS 37.145-2 [11] defines a 
method to obtain an estimate of the TRP from determined e.i.r.p. values as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝜋𝜋

2𝑁𝑁𝑁𝑁
� �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃𝑛𝑛, 𝜑𝜑𝑚𝑚)

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0

sin 𝜃𝜃𝑛𝑛 
(9) 

Where: 
 N: the number of samples in the 𝜃𝜃 angle; 
 M: the number of samples in the 𝜑𝜑 angle. 

Each (𝜃𝜃𝑛𝑛, 𝜑𝜑𝑚𝑚) is a measurement sampling point. The sampling angular intervals for 𝜃𝜃 and 𝜑𝜑 are ∆𝜃𝜃 =  𝜋𝜋
𝑁𝑁
 and 

∆𝜑𝜑 =  2𝜋𝜋
𝑀𝑀

 [11].  

Under certain conditions it may be possible to derive a TRP estimate from a measurement at a single location. 
The measured power density of the test signal can be expressed as follows: 

𝑃𝑃𝐷𝐷 =
𝑃𝑃𝑟𝑟𝑟𝑟
𝐴𝐴

 (10) 
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or 

𝑃𝑃𝐷𝐷 =
𝑃𝑃𝑟𝑟𝑟𝑟4𝜋𝜋

𝐺𝐺(𝜃𝜃2, 𝜑𝜑2)𝜆𝜆2
 

where Prx is the power measured at the signal analyser input RF port, A is the antenna aperture area and 
𝜃𝜃2, 𝜑𝜑2 are the vertical angles from BS antenna to the test point. 

The e.i.r.p. of test signal towards a measurement antenna located under a certain vertical and horizontal angle, 
EIRPtest(θ2,ϕ2), can be expressed as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃2, 𝜑𝜑2) = 4𝜋𝜋𝑟𝑟2𝑃𝑃𝐷𝐷 =
𝑃𝑃𝑟𝑟𝑟𝑟(4𝜋𝜋𝜋𝜋)2

𝐺𝐺(𝜃𝜃2, 𝜑𝜑2)𝜆𝜆2
 

(11) 

where r is the distance between BS and measurement antenna and G(θ2,ϕ2) is the measurement antenna gain 
towards BS. The TRP of test signal equals: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃2, 𝜑𝜑2)

𝐷𝐷(𝜃𝜃1, 𝜑𝜑1)  
(12) 

where D(θ1,ϕ1) is the directivity in the direction towards the measurement antenna. This information has to be 
provided by the BS manufacturer. The carrier TRP is then calculated as: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐶𝐶 (13) 
 
where C is a scaling factor to account for the power ratio of test signal to full carrier signal. This information 
also has to be provided by the BS manufacturer. The locations and orientations of both BS and 
measurement antenna are required to determine r, θ1, ϕ1, θ2 and ϕ2. 

4.5 SELECTION OF MEASUREMENT METHOD 

As mentioned in section 3.2, administrations need to perform over-the-air measurements of radio devices such 
as mobile base stations deployed in the field for a variety of reasons. There is no single solution for all AAS 
field measurement scenarios and there could be a range of options. The actual “measurement method” is a 
combination of the requirements, conditions and available equipment as elaborated in sections 3.2, 4.3 and 
4.4. Among others, the choice of applicable approach/method may depend on the following: 

Purpose and result of measurement:  
 Is it only necessary to measure the field strength at a predetermined location (e.g. at the point of 

interference, or at the border), or is the maximum possible radiation (e.i.r.p./TRP) from a base station to 
be determined (e.g. for checks for licence compliance)? 

Status of the base station:  
 Can the base station be put into a test mode, or does the measurement need to be performed under normal 

operating conditions? 

Constraints from the location:  
 Does the area around the base station allow free selection of measurement points, or is it dominated by 

obstructions?  
 Can a reflection-free environment be assumed?  
 Can it be assured that the measurement location(s) are in the main lobe of the transmitted beam(s)?  

Available equipment:  
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 Is an air-based measurement (e. g. with a drone) available, or does the measurement need to be performed 
on the ground?  

 Is it possible to attract a traffic beam with a (modified) UE?  
 Is a dedicated 5G measurement receiver available that can decode the signal and measure single resource 

elements, or is the measurement planned to be performed with general monitoring equipment such as a 
spectrum analyser? 

Another important aspect that influences the selected method is the available and required measurement 
uncertainty. It should be noted that there are many uncertainties in the measurement, some of them common 
to OTA measurements in controlled environments (see for reference 3GPP TR 37.941 Annex A [13]) and some 
specific to outdoor environments.  

These uncertainties result from:  
 Pointing misalignment between the AAS BS and the receiving antenna; 
 Mutual coupling between the AAS BS and the receiving antenna; 
 Multi-path between the AAS BS and the receiving antenna; 
 Environmental interference; 
 Polarisation mismatch between the AAS BS and the receiving antenna; 
 Phase curvature due to limited far-field conditions; 
 Distance measurement deviation between the AAS and the receiving antenna; 
 Atmospheric attenuation; 
 Uncertainty of the absolute gain of the reference antenna; 
 Influence of the receiving antenna feed cable; 
 Uncertainty of the RF power measurement equipment (e. g. spectrum analyser); 
 Temperature effects; 
 Impedance mismatch between the receiving antenna and RF cable; 
 Impedance mismatch between the RF cable and measurement equipment; 
 Random uncertainty. 

The magnitude of these factors also depends on the operating frequency band. 

Additional uncertainties are related to the measurement approach and calculation of e.i.r.p./TRP from the 
measured values. For example, when measurements at multiple locations are combined to estimate TRP, the 
degree of confidence will generally improve with a higher density of the angular sampling around the BS [12] 
[13]. 

Additional uncertainties for drone measurements are related to precision of drone GNSS positions (longitude 
and latitude) and altitude. 
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 MEASUREMENT EXAMPLES 

This section contains case studies (including simulations) of actual 5G measurements based on selected 
methods. 

5.1 IN-FIELD GROUND-BASED MEASUREMENT OF THE SSB 

5.1.1 Description 

Instead of taking a large number of e.i.r.p. measurements, this example focuses on determination of e.i.r.p. at 
a single point which is then used to extrapolate to full carrier power or to convert an equivalent or a proxy for 
TRP in the field.  

To convert an e.i.r.p. test/reference sample to TRP, the following information is necessary: 
 BS antenna orientation and location; 
 In case of measuring reference signal, the carrier resource element power allocation profile is required to 

extrapolate full carrier power; 
 Measurement equipment antenna gain and orientation towards BS.  

For this measurement, the main lobe of an SSB beam is used for the position of the test point. 

5.1.2 Measurement procedure  

The Synchronisation Signal Block (SSB) signal is taken into consideration in order to convert the measured 
received power to the TRP value. Since the SSB signal is always present independently from the specific traffic 
pattern, measuring TRP from SSB does not affect traffic and does not require a specific test mode or test 
signal. 

The 5G outdoor base station is located in Shanghai.  

The relevant station data is as follows: 
 AAU type: AAU 5613; 
 Centre frequency: 3750 MHz; 
 Duplex mode: TDD; 
 NR frequency band: 3GPP n78; 
 Configured TRP: 53 dBm; 
 Bandwidth: 100 MHz (273 Resource Blocks, RBs); 
 Antenna gain: 25 dBi (main beam); 
 SSB Beam: vertical down-tilt 6°，Horizontal angle range 105°; 
 Downlink/uplink ratio: 4:1; 
 Height: 30 m; 
 Location: longitude 121°37.4226′, latitude 31°15.5911′; 
 Antenna azimuth direction: 0°; 
 Antenna down-tilt (Mechanical): 20°; 
 Antenna polarisation: +- 45°. 
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Figure 8: 5G NR base station 

The key points of the SSB TRP measurement solution are as follows: 
 Accurate measurement of SSB TDD signals; 
 Accurate calculation of SSB beam gain and transmission insertion loss. 

There is no TDD trigger signal in the field, so the SSB signal measurement is performed in demodulation mode. 
The R&S-TSMA6-scanner has an SSB signal demodulation function. Alternatively, a spectrum analyser could 
be used at zero span and locked to the known duration of the SSB, but it would be difficult to separate the SSB 
signal from the signal spectrum in normal operating conditions due to traffic. 

The selection of the receiving location is the key to accurately calculate the SSB beam gain; in particular: 
 far-field conditions are necessary; 
 the test Rx antenna should be sufficiently high to minimise the effect of ground reflections; 
 multipath reflections should be minimised, also by repeating the measurement at different locations in the 

sector.  

For the beam pattern, the energy curve within the 3 dB beamwidth of the main lobe is smooth; therefore, the 
accuracy of beam gain calculation is optimal when the test point is selected in the main lobe area.  

The SSB beam direction area on the map can be obtained based on the known base station location and SSB 
beam information, as shown in Figure 9. The main beam direction area is selected as the receive position in 
this test.  

According to the beam sweeping behaviour of SSB, the beam carrying SSB information is periodically swept 
in space in some specific directions, 7 in this case. The radiated pattern envelope (RPE) looks like the one in 
the centre of Figure 5. 

Since the measurement is performed on the e.i.r.p. of one SSB beam, the sidelobe energy of the beam does 
not affect the test result. 
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Figure 9: SSB beam direction on the map 

The relevant data of the measurement position are: 
 Receiving instrument：R&S-TSMA6 
 Rx antenna： the gain of the standard horn antenna is 12 dB@3750 MHz, including a 2 m RF cable 
 Receiving location: longitude 121°37.25′25.35″, latitude 31°15′37.43″, 60 m away from the base station 
 Rx antenna is vertically polarised 

In order to align the SSB beam in the receiving location azimuth and elevation; polarisation of the Rx antenna 
and the position in the 3 dB beamwidth area are to be adjusted until the receiving instrument receives the 
maximum power.  

The measurement results and calculation process are as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑𝑑𝑑𝑑𝑑) + 𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑) − 𝐺𝐺𝑅𝑅𝑅𝑅(𝑑𝑑𝑑𝑑𝑑𝑑) + 𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑𝑑𝑑) − 𝐺𝐺𝑇𝑇𝑇𝑇(𝑑𝑑𝑑𝑑𝑑𝑑)
+ 10log (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅)(𝑑𝑑𝑑𝑑) 

(14) 

Where: 
 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅: received RE power of one SSB beam = -27.1 dBm for SSB index 3; 
 IL: Rx cable insertion loss = 1 dB; 
 𝐺𝐺𝑅𝑅𝑅𝑅: Rx antenna gain = 13 dBi; 
 FSL = Free Space Loss = 80.5 dB over a distance of R=√30^2+60^2=67.08 m; 
 𝐺𝐺𝑇𝑇𝑇𝑇: Tx antenna gain = 25 dBi; 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: number of subcarriers = 12; 

 𝑁𝑁𝑅𝑅𝑅𝑅: number of resource blocks in 100 MHz = 273. 

The measured TRP is equal to -27.1 dBm +1 dB -13 dBi +80.5 dB -25 dBi +10*log (12*273) = 51.5 dBm 

As the configured TRP is 53 dBm, the deviation between the measured TRP and the configured TRP is 1.5 
dB. 
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The power of one SSB beam used for RSRP (Reference Signal Received Power) is the received power of 1 
RE, determined as the average of power levels received across all Reference Signal symbols, within the 
considered measurement frequency bandwidth. 

 

Figure 10: SSB main beam field test result 

Notes on the measurement uncertainty: 
 The GNSS device is required for selecting the receiving position. The GNSS position precision deviation 

causes deviation in SSB beam estimation gain. In actual measurement, the distance calculated based on 
the position precision of the GNSS provided by the R&S scanner causes the measurement result to 
fluctuate by 1 dB to 2 dB. A GNSS device with higher precision (<1 m) is required to improve the 
measurement precision; 

 Multi-path interference in the field may cause the measurement result to fluctuate by several dB; 
 Downlink interference from stations other than the one being measured can result in inaccurate 

measurements of the wanted station. 
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The verification result shows that the measurement error is within an acceptable range, which proves the 
feasibility of the measurement solution.  

The measurement uncertainties should be taken into consideration when reviewing the measurement results. 
These measurement uncertainties have different statistical distributions, but according to the test experience 
the maximum value of total measurement uncertainty is around 4 dB. 

It is assumed that all nearby equipment is time synchronised so that there is no uplink interference. 

5.2 AIRBORNE MEASUREMENTS OF SSB AND TRAFFIC BEAMS ON BS IN A TEST MODE 

5.2.1 Description 

This case describes measurement of both SSB and traffic beams with a drone.  

For measurement of the traffic beams, the base station was set into a test mode with an artificial load of 100%. 
Access to the BS control system was required in order to activate the artificial load.  

The levels for the SSB beams can be obtained from the results at the same time. This corresponds to a 
scenario without specific test mode and can also be performed without artificial load. 

5.2.2 Measurement procedure  

For measurements of the traffic beam the base station (BS) needs to generate a stable signal during 
measurement. Specialised equipment (drones) and personnel are required to carry out the measurement. 

The SSB beams can be measured to allow extrapolation to full carrier power or conversion to a proxy for TRP 
in the field without specific test mode. 

The 5G outdoor base station is located next to the Nokia campus in Oulu, Finland. The relevant base station 
and commissioning data is as follows: 
 BS type: Nokia 5G BS; 
 Centre frequency: 3541.44 MHz; 
 Duplex mode: TDD; 
 NR frequency band: 3GPP n78; 
 Configured TRP: 53.5 dBm;  
 Datasheet maximum average e.i.r.p.: 79 dBm; 
 NR Bandwidth: 60 MHz; 
 Antenna directivity: 24 dBi; 
 Beamset vertical downtilt: 6 degrees, Horizontal angle range 120 deg; 
 NR SSB Beamset #6, Beams 0-5; 
 NR Refinement beams: OFF; 
 Antenna height: 33 m. 
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Figure 11: 5G NR base station 

The main purpose of this measurement case is to evaluate drone measurements with a Logger/Scanner NR 
SSB-logging and R&S Time Gated Spectrum-logging capability for evaluating SSBs and BS TRP while the 
BS artificial load is set to 100% power. 

 

Figure 12: Flight route 360 degrees around base station tower 

The flying route was 360 degrees around the base station tower during artificial load data transfer as shown 
in Figure 12. 

Measurement setup: 
 Drone Mission Planner automatic 360 degree flying route; 
 Altitude: 29 m (Middle of the beams in elevation perspective); 
 Radius: 60 m; 
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 Groundspeed: 1.5 m/s; 
 Logger measuring antenna was horizontally balanced with gimbal and orientation was towards the radio 

for the whole flight. 

R&S Logger measurement probe pattern gain was pre-tested in laboratory: 
 Cable Loss: 1 dB @ 3.6 GHz; 
 Antenna Gain: 1.5 dBi @ 3.540 GHz. 

Note: A wide frequency band measurement probe working equally for both +/-45 deg was selected for this 
measurement purpose, and its radiation pattern of +45 deg and -45 deg polarisation has been measured when 
it was installed to the drone, as it was used during the test flights. 

R&S logger parameters: 
 Time gated spectrum measurement bandwidth: 9.6 MHz “Hunting view”; 
 The logger measured 20 kHz frequency steps from 3552 MHz to 3564 MHz, so each sweep contains 950 

measurements and overall, 2200 rows of data; 
 The logger captured a part of the spectrum that is wider than the bandwidth of the SSB. Pure payload 

signals from the traffic beams are found outside the SSB frequency block. 

The maximum beam peak was searched in the elevation domain. The maximum SSB beam level was defined 
by flying vertically at the fixed selected distance of 60 m in front of the BS antenna sector to achieve maximum 
accuracy of the following horizontal direction 360 degree flights in the middle of the beam height. In this case 
optimum altitude for the horizontal flights was 29 m which is in line with the beamset downtilt of 6 degrees. The 
60 m distance was selected due to the fact that the tested BS signal was well above any neighbouring BS or 
close by UE interference, but still not too close to the BS to ensure that the test was done under far-field 
conditions. 

The next step is to define Time Gated Spectrum and SSB RSRP offset of the SSB frequency block. This 
measurement is to determine the offset of the dBm reading of the time gated spectrum view to the known 
calibrated NR SSB RSRP readings of the same device. In later phases this correction is used to compute time 
gated spectrum amplitude information correctly for the TRP calculations. NR SSB RSRP readings of the test 
equipment are calibrated information in dBm scale. For this test case, the TRP calculations offset to use the 
time gated spectrum results is 20 dB. 

NOTE: In addition to above correction offset an external 20 dB attenuator is used at the measurement antenna 
probe port. This 20 dB factor is used in both NR SSB RSRP and time gated spectrum calculations.  

According to the beam sweeping behaviour of SSB, the beam carrying SSB information is periodically swept 
in space in specific directions, which is #6 in this case. Figure 13 shows the measured SSB beams 0-5 in NR 
SSB Beamset #6 on a radar chart.  

Measuring SSB beams was used as a sanity check to verify the beam shape and to ensure that flight altitude 
was in the middle of the beam. It is also possible to evaluate the expected TRP result mathematically if it is 
not possible to use artificial load. 
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Figure 13: Used GridOfBeams Beamset #6 Radar Chart (360 deg drone flight) 

 

Figure 14: Used GridOfBeams Beamset #6 Horizontal Cut (360 deg drone flight) 

Figure 14 shows the measured SSB beams 0-5 in NR SSB Beamset #6 in a horizontal cut of the drone flight. 
As a reference comparison, the same product was measured in a CATR chamber. Figure 15 shows measured 
SSB Beamset #6 horizontal cut in a CATR chamber. e.i.r.p. results are normalised, and radiation patters 
measured by using 3GPP test models. It can be seen that the 360 degree drone flight results match well with 
the measurement in the CATR chamber. 
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Figure 15: Used GridOfBeams Beamset #6 Horizontal Cut (CATR chamber) 

In the CATR chamber the measured average e.i.r.p. is 79 dBm. Calculating TRP from e.i.r.p. results with 24 
dBi antenna directivity leads to TRP = 55 dBm with the 3GPP test model. 

In the 360 degree drone flight the BS RF power was measured with artificial load set to 100%. Results can be 
obtained in Figure 16 and Figure 17. 

First the correct beam height was measured. This was done by performing an automatic vertical cut in the 
middle of one beam in the Grid of Beams. Vertical cut height depends on elevation of the environment, antenna 
tilt and antenna height. In this case the drone was lifted to 80 m and then descended back to 20 m with a 
speed of 1.5m/s. In the vertical cut visualisation results one can determine vertical beam shape and highest 
RSRP value for the GNSS altitude of the measured beam. This value gives altitude for 360 degree automatic 
flight. When the 360 degree automatic flight mission is completed, flight results can be visualised as RF power 
graphs as in Figure 16 and Figure 17. 

To find pure payload, the logger measured the power outside SSB frequency in every measurement point and 
the results were summed together. This TRP is measured as the envelope of all directions continuously. SSB 
power and data traffic power are transmitted separately. SSB power is split between used SSB beams. Artificial 
load sets the data traffic to all SSB beams simultaneously. According to the beam sweeping behaviour of the 
SSB, the beam carrying SSB information is periodically swept in space in some specific directions, which is 6 
in this case. 
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Figure 16: Non-scaled logger RF Power raw result radar chart 

 

Figure 17: Non scaled logger RF power raw result line chart 

Summing of R&S Logger 360 degree route at beam elevation 29 m altitude at 60 m radius: 
 Sum of RF power 2200 samples dBm is converted to power (W) and then average power is calculated for 

the whole 360 degree flight; 
 Calculated power (W) is converted to dBm scale and that value is used for TRP calculations: -66.3 dBm; 
 60m distance path loss at 3.541GHz: 79 dB; 
 Measuring antenna attenuation: 20 dB; 
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 Calculated TRP: 

-66.3 dBm + 79 dB (Path Loss) + 20 dB (Time gated spectrum offset) + 20 dB 
(Measuring antenna attenuator) = 52.7 dBm 

   TRP = 52.7 dBm  
 Calculated e.i.r.p.: 

52.7 dBm (TRP) + 24 dBi (Antenna directivity gain) = 76.6 dBm 

   e.i.r.p. = 76.6 dBm 

In the measured radio type datasheet, the maximum average e.i.r.p. was 79 dBm and during the test the 
configured e.i.r.p. was 77.5 dBm. The measured result is in line with the datasheet considering that vertical 
part of beam energy is not included on this horizontal flight, so a small part of the overall energy is missing 
from the result. The error from this measurement can be considered to be in the order of 0.5-1.0 dB. 

It should be noted that there are uncertainties in the measurement, which are common when measurements 
are performed in outdoor environment. 

Uncertainties result from:  
 Random uncertainty; 
 Atmospheric attenuation; 
 Outdoor temperature variations; 
 RF interference e.g. by external source of BS or UE; 
 Uncertainty of the measurement equipment e.g. logger-specific uncertainty; 
 Environmental interference e.g. resulting from reflections (e.g. rooftops or other strong reflective surfaces) 

close to BS; 
 Measurement antenna probe e.g. polarity balance and frequency flatness; 
 Position and elevation accuracy and stability of the drone e.g. use of reference GNSS and wind effects;  
 Measurement probe alignment accuracy towards BS during flight e.g. drone & control software quality; 
 Impedance mismatch between RF cable and measurement equipment; 
 Geometry-based polarisation mismatch; 

It is assumed that all nearby equipment is time synchronised so that there is no uplink interference. 

These measurement uncertainties have different statistical distributions, but according to the test experience 
the maximum value of total measurement uncertainty is around 2-4 dB. It should be noted that the 
measurement uncertainty is also dependent on the operating frequency band. 

This method requires access to the BS control system for activating a test mode in downlink transmission for 
all the SSB beams with an artificial 100% load. In this measurement case, one sector of the BS is used for the 
test, but equally all BS sectors could be used simultaneously. In practice the one sector test is better for 
identifying the beam directions and beam shape more clearly. The method requires a high quality drone and 
a logger control system to minimise the variation in measurement results. Permission to use a drone and the 
possibility to fly close to the BS site is also required. This will be challenging in certain geographical locations 
such as busy urban areas. 

This measurement case provides a first proof-of-concept results for drone measurements. The results look 
quite promising, but more measurements are required to estimate the overall measurement accuracy, 
variance, and test uncertainties. 

The method can also be used for measuring a TRP equivalent from peak beam or from reference beam. While 
limiting measurements to the SSB, there is no need to access BS control system because SSB beams can be 
measured without artificial load. In this case the absolute total TRP needs to be calculated from the known 
alternative simultaneous possible beam directions of the BS.  
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5.3 IN-FIELD GROUND-BASED MEASUREMENT BY ATTRACTING A TRAFFIC BEAM WITH A TEST 
UE 

5.3.1 Description 

This example determines the e.i.r.p. of a traffic signal at different ground-based locations while a UE is used 
to attract a beam. Three different approaches of the same principle are tested: 
 Co-located UE and test antenna; 
 Test-UE placed at a fixed location and moving the measurement antenna around this location; 
 Measurement antenna at a fixed location while moving the test-UE around. 

The TRP is then calculated by integration of the measured power under several angles in the main lobe of the 
traffic beam. The degree of influence of the angular sampling intervals on the measurement accuracy is also 
investigated.  

The first approach requires knowledge of the directivity of the BS antenna, whereas Method 2 and 3 do not 
need this information. 

The relevant station data is as follows: 
 BS type: AIR 5212; 
 Centre frequency: 27560 MHz; 
 Duplex mode: TDD; 
 NR frequency band: n257; 
 Configured TRP: 0 dB (relative); 
 Bandwidth: 100 MHz; 
 Antenna directivity: 23.8 dBi (boresight main beam); 
 SSB Beam: not used; 
 Downlink/uplink ratio: 3:1; 
 Height: 42 m; 
 Location: longitude 11.9418, latitude 57.7051; 
 Antenna azimuth direction: 13°; 
 Antenna down-tilt (Mechanical): 6°; 
 Antenna polarisation: V/H; 
 Beamforming type: Grid of beams. 

It is assumed that all nearby equipment is time synchronised so that there is no uplink interference. 

5.3.2 Equipment and system parameters 

The test equipment depicted in Figure 18 was used in all measurements. The UE is a 5G device which was 
used to trigger a traffic beam. A dual-polarised Test Antenna (TA) was mounted on a two axis Elevation (EL) 
over Azimuth (AZ) positioner. This makes it possible to point the TA in any direction in the upper hemisphere. 
Each antenna polarisation port was connected to a separate radio receiver unit, each calibrated indoor to a 
power meter. A GNSS receiver was used to record the position of the TA. The gain of the TA used in the 
measurement is 38 dBi. 
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Figure 18:Test Equipment using a 2-axis positioner (scanner) and a high-gain antenna (38 dBi) 

A discussion and recommendations on how to select the test antenna is found in ANNEX 1. 

5.3.3 Measurement procedures  

5.3.3.1 Method 1: Co-located test antenna and UE 

In short, this method uses the following principle: Try to direct a beam towards the UE with maximum e.i.r.p., 
measure power density and scale to TRP using the distance, wavelength and maximum directivity of the AAS. 

At each test point the UE is co-located with the TA and the turntable is used to find the direction towards the 
BS. The TA is directed towards the BS and the received power is measured. Note: due to the fixed grid of 
beams, the directivity in the measurement direction may be lower than the maximum directivity. Consequently 
the measured power may be lower that the peak power. The measured power is adjusted for cable losses and 
related to the power 𝑃𝑃𝑇𝑇𝑇𝑇 at the TA port. This is then related to the power density by using the effective antenna 
area 𝐴𝐴𝑇𝑇𝑇𝑇: 

𝑃𝑃𝐷𝐷 =
𝑃𝑃𝑇𝑇𝑇𝑇
𝐴𝐴𝑇𝑇𝑇𝑇

=
𝑃𝑃𝑇𝑇𝑇𝑇4𝜋𝜋
𝐺𝐺𝑇𝑇𝑇𝑇𝜆𝜆2

 (15) 

Here, 𝐺𝐺𝑇𝑇𝑇𝑇 is the realised gain of the TA. The power density is scaled to e.i.r.p. using: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃, 𝜙𝜙) = 4𝜋𝜋𝑟𝑟2𝑃𝑃𝐷𝐷(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) (16) 
 

TRP is then obtained via the directivity (D) of the AAS as: 

𝑇𝑇𝑇𝑇𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃, 𝜙𝜙)

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
 

(17) 

This will underestimate the true TRP value compared to Eq. (1). 

The directivity 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 is derived from chamber e.i.r.p. measurements on a boresight beam. In a real situation 
directivity has to be known.  

In a grid of beam design the directivity of the received beam will have a ripple, which will also be present in the 
estimated TRP. Since the actual directivity is smaller than the peak, this error is one-sided and always gives 
an underestimation of the TRP value. One crucial part is therefore to try to maximise the e.i.r.p., i.e. move the 
TA to a point close to the peak direction.  
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Figure 19: Positions of TA and UE for Method 1 

The procedure for this measurement is as follows: 
1 Place the test antenna in the service area;  
2 Record the GNSS coordinates (longitude, latitude and altitude) of the BS; 
3 Start the UE and make sure it triggers a traffic beam towards the TA; 
4 Direct the TA towards the BS by maximising the received power as a sum of power over two orthogonal 

polarisations. Record the GNSS coordinates (longitude, latitude and altitude) of the TA; 
5 Convert the received power to e.i.r.p. by first converting the received power to incident power density and 

then using Eq. (16); 
6 Continue to a new test point and repeat steps 4-5 to get an e.i.r.p. value until a maximum e.i.r.p. is found. 

Post-processing step 

1 Convert the max e.i.r.p. value to TRP by using the directivity of the BS and Eq. (17) 

5.3.3.2 Method 2: Moving Test antenna and fixed UE 

In the second method the UE is kept at a fixed location, implying that one beam will be selected by the system 
during the measurement. No other traffic is present in the measurements. The TA is directed towards the AAS 
from a number of positions. A part of the radiation pattern will in this way be measured in a street level 
environment. Due to the high gain of the TA (38 dBi), the impact of scattering and RF interference is low. This 
is an important feature of the measurement setup in order to get a good end result.  

The TRP value can now be assessed as a spatial average by using Eq. (18) (see below). An alternative 
approach is to estimate the directivity from the beamwidth of the measured pattern. Using this information, the 
directivity can be approximated and used to derive TRP from the e.i.r.p. value obtained by applying Eqs. (15)-
(17).  
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Figure 20: Positions of TA and UE for Method 2 

In this method TA (blue, see Figure 20) is used at different locations while the UE (red) is kept at a fixed 
position. The corresponding e.i.r.p. values from the TA measurements represent a part of the e.i.r.p. pattern. 
This is used to retrieve TRP. 

The procedure for this measurement is as follows: 
1 Record the GNSS coordinates (longitude, latitude and altitude) of the BS; 
2 Set the UE in the service area of the BS. Try to use a location in the centre of the service area; 
3 Start a download process on the UE, (e.g. fast.com) and make sure a high throughput is achieved; 
4 Determine a set of test points that cover at least the main beam of the BS. The main beam should now 

point towards the UE as a consequence of Step 3; 
5 At each test point: 

a) Align the TA to reach maximum received power (sum over two orthogonal polarisations); 
b) Record the GNSS coordinates (longitude, latitude and altitude) of the TA; 
c) Make sure the throughput to the UE is maintained. 

Post processing steps variant A 
6 For each test point: 

a) Scale the received power samples to e.i.r.p. samples, by compensating for cable losses, TA gain and 
BS-TA distance, see Eq. (16); 

b) Obtain the spherical coordinates of the TA as seen from the BS by using the TA and BS GNSS 
coordinates respectively; 

c) Calculate the angular distance (great circle distance) to each centre point of the bins of a predefined 
grid and assign the e.i.r.p. time sample to the angular bin of smallest angular distance. 

7 Within each bin (labelled by n), calculate e.i.r.p.n as the average e.i.r.p. (in linear scale, e.g., using mW or 
W units) of all e.i.r.p. time samples in the bin.  

8 For all bins that lack measured power values, assign zero e.i.r.p. 
9 Calculate TRP as a weighted sum of the binned e.i.r.p. values: 
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𝑇𝑇𝑇𝑇𝑇𝑇 =
1

4𝜋𝜋
�𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑛𝑛 Ω𝑛𝑛
𝑛𝑛

 (18) 

Here Ω𝑛𝑛 is the solid angle of bin n. 

Post processing steps variant B 
6 For each test point:  
 Scale the received power to e.i.r.p., by compensating for cable losses, TA gain and BS-TA distance, 

see Eq. (16); 
 Obtain the spherical coordinates of the TA as seen from the BS by using the TA and BS GPS-

coordinates respectively. 
7 Use the derived angular e.i.r.p. pattern from the previous step to estimate the Half-Power Beamwidths 

HPBWH and HPBWV in the horizontal (H) and vertical (V) directions, respectively. Use the Kraus relation 
to estimate the peak directivity, i.e. from equation (7), 

𝐷𝐷 ≈
180

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
×

180
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

 

8 Find the peak e.i.r.p. by using an adequate interpolation technique.  
9 Estimate the TRP as Peak e.i.r.p. from step 8 divided by the estimated Directivity. 

5.3.3.3 Method 3: Fixed TA and moving UE 

In this method the TA is kept fixed and the UE is moved. As the beam points towards the UE either the main 
lobe will be sampled (when the UE is close to the TA) or the sidelobe region will be sampled (when the UE is 
away from the TA). 

The GNSS coordinates of the UE is measured versus time. The TA is directed towards the BS and a power 
trace in time is measured. By synchronising the time scales, the power samples can be related to positions of 
the UE and further to angles from the BS. To avoid erroneous overweighting of non-independent samples 
(power samples close in angle to one another) the same binning and integration technique as described for 
Method 2 is used. 

 

Figure 21: Positions of TA and UE for Method 3 

In Method 3 the TA (blue, see Figure 21) is used at a fixed location while the UE (red) is moving. The e.i.r.p. 
sequence is thus generated by sweeping the beam by directing it towards the moving UE. The e.i.r.p. sample 
at each time is associated to the direction of the UE as seen from the AAS. The spherical integration of this 
e.i.r.p. sequence is used as a proxy for TRP. 
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The procedure for this measurement is as follows: 
1 Set the TA and the UE in the service area of the BS. Try to use a location in the centre of the service area; 
2 Start a download process on the UE, (e.g. fast.com) and make sure a high throughput is achieved; 
3 Align the TA to reach maximum received power (sum over two orthogonal polarisations); 
4 Record the GNSS coordinates (longitude, latitude and altitude) of the BS; 
5 Record the GNSS coordinates (longitude, latitude and altitude) of the TA; 
6 Make sure the UE logs GNSS coordinates versus time; 
7 Move the UE to cover as large an angular region as possible, and most importantly the service area. Make 

sure some measurement data is recorded with the UE direction close to the TA direction to make sure the 
main beam power is measured; 

8 Make sure the throughput to the UE is maintained; 
9 While 7 and 8 are considered, measure the received power by the TA versus time. 

Post processing steps: 
1 Calculate the BS-TA distance using GNSS data from steps 4 and 5; 
2 Get the received power time samples as the most common power level by using a histogram technique, 

see ANNEX 2; 
3 Scale the received power time samples to e.i.r.p. time samples, by compensating for cable losses, TA gain 

and BS-TA distance, see Eq. (16); 
4 For each e.i.r.p. time sample:  

a) Obtain the spherical coordinates of the UE as seen from the BS by using its GNSS coordinates (Step 
6) and the BS GNSS coordinates (Step 4); 

b) Calculate the angular distance (great circle distance) to each centre point of the bins of a predefined 
grid and assign the e.i.r.p. time sample to the angular bin of smallest angular distance. 

5 Within each bin (labelled by n), calculate  𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑛𝑛 as the average e.i.r.p. (in linear scale, e.g., using mW or 
W units) of all e.i.r.p. time samples in the bin.  

6 For all bins that lack measured power values, assign zero e.i.r.p. 
7 Calculate TRP by a numerical integration of the binned e.i.r.p. values by using: 

𝑇𝑇𝑇𝑇𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
1

4𝜋𝜋
� 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑛𝑛
𝑛𝑛=1:𝑁𝑁

Ω𝑛𝑛 (19) 

Here, 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑛𝑛 is the average of all e.i.r.p. values in bin n, and Ω𝑛𝑛 is the solid angle of bin n in steradians. The 
summation goes over the N bins covering the full sphere. Note, that data will be missing in most bins and set 
to 0 respectively. It is therefore important that the contributing data is representative. 

5.3.4 Validation/example measurement with the details of equipment and settings 

5.3.4.1 Method 1: Co-located UE and test antenna 
The AAS was mounted at about 42 m height and directed eastwards (slightly to the north). The test points 
were taken along a radial route eastward at distances from 160 m to 540 m. In each test point Line of Sight 
(LOS) conditions were met, and scattering was well filtered out by using a high gain test antenna (TA). Final 
results are compared to a chamber measurement of TRP. This level was set to 0 dB which serves as a 
reference level for all power values. The distance from the BS to the TA was obtained from logged GNSS 
coordinates. 
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Figure 22: Photos taken from two different test locations (left and middle) with the BS mast marked 
with a yellow rectangle. Right: power scanner result  

It is important to monitor the results from the power scanner to ensure the quality of the test result. The line-
of-sight component is manifest and the scattering and interference are well suppressed by the high gain of the 
test antenna. 
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Figure 23: Received power (top), e.i.r.p. (middle) and TRP (bottom) using methodology 1 for  
co-located UE and TA. The BS (approx. 42 m in height) is marked as a yellow square.  
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Figure 24: Received power for a set of test points away from the BS  
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Scanner results are shown for the closest point, the minimum e.i.r.p. point (4th point), and the maximum e.i.r.p. 
point (8th point in Figure 24). After transformation to TRP using the maximum directivity the variation is about 
3 dB (max to min) which is about the expected directivity variation in the grid of beam layout of the AAS. Since 
the unknown directivity is deemed to be lower than the peak directivity of the AAS, it is reasonable to use the 
peak e.i.r.p. point (at 311 m) for TRP assessment. 
One of the main error sources in the final result originates in the difficulty to find and assess the test point 
corresponding to the maximum directivity. This method also relies on knowing the directivity of the product. 
The power scan is a raw power scan with a narrow band filter of 2 MHz, with no de-modulation applied. The 
only correction is a scaling factor from the used RBW (2 MHz) to the carrier bandwidth (100 MHz). One benefit 
from using traffic beams for measurements is that no details about the SSB and broadcast design needs to be 
identified. All power is measured at peak capacity. 

5.3.4.2 Method 2: Fixed UE and moving test point 

This method uses a fixed UE to lock the BS radiation pattern while the TA is used to sample a part of the 
e.i.r.p. pattern which in turn is used to retrieve the TRP. As opposed to the first method, the directivity is not 
needed as input. 

With the UE position fixed, and without any other traffic in the cell, should imply that the e.i.r.p. pattern of the 
BS is fixed in time. The TA was moved to different positions, basically along a straight line (see Figure 25). At 
each point the received power was measured and GNSS coordinates were logged. The GNSS coordinates of 
the TA and the BS were used to calculate the distance from the BS to the TA which was used to convert 
received power to an e.i.r.p. value for the test direction, see Eq. (15)-(17). The set of e.i.r.p. values thus forms 
a part of the e.i.r.p. pattern of the BS (see Figure 26). 

Two different approaches are applied to obtain a TRP value from the e.i.r.p. pattern:  
 (2a): In the first method a binning technique and numerical integration is used to integrate the e.i.r.p. pattern 

and retrieve TRP based on Eq. (19);  
 (2b): In a second method, the conversion is based on the peak e.i.r.p. and the Half Power Beamwidth 

(HPBW) of the measured pattern. 

As in Method 1, the reference 0 dB level is the TRP of the chamber measurement. 

The method for numerical integration uses a set of rectangular bins in 𝜃𝜃 and 𝜙𝜙 covering the full sphere. Each 
bin is defined by its centre direction and each measurement point is assigned the closest (shortest angular 
distance) bin. In each bin the e.i.r.p. values are averaged and assigned to the bin. Thereafter, numerical 
integration is applied according to Eq. (19). 

The method using the HPBW of the measured pattern uses the e.i.r.p. trace to retrieve the horizontal HPBW. 
In this particular case the vertical HPBW is assumed to be the same as the horizontal one. This assumption 
relies on knowledge of the AAS array layout or chamber measurements. It could also be retrieved by adding 
additional elevated or radial test points. The HPBWs are plugged into Eq. (7) to get an estimate of the AAS 
directivity. Finally, Eq. (17) is used to estimate TRP. 
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Figure 25: Setup for fixed UE and moving TA measurements  

The UE was mounted on a tripod and used to generate the “best” traffic beam in the direction of the UE. The 
TA is used to measure the received power which is transformed to e.i.r.p. at different test locations. 

 

Figure 26: The UE (red +) is fixed and the scanner is moved. Received power is scaled to e.i.r.p. (peak 
value is about 20 dB including directivity) and displayed on the map 
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Figure 27: Measured e.i.r.p. data in BS coordinates  

The upper plot in Figure 27 shows the geometric projection of the test trace (red circles) to points at a constant 
distance (yellow circles). The e.i.r.p. pattern is shown along the test trace (middle) and projected on a BS-
centred sphere (bottom). In the middle plot, a simulated e.i.r.p. pattern is also presented.  
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Figure 28: The measured data collected into angular bins and averaged per bin. Use of small bins 
(upper) and 3GPP reference step bins [13] (lower) 

 

Figure 29: TRP results after numerical integration of the binned data (method 2a) and indirect via the 
HPBW of the measured pattern (method 2b) 
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When measuring only a small portion of the sphere it is important to capture the dominant angular regions, 
which is probably the main beam and the first side lobes. Grating lobes present a particular problem, but that 
is not addressed in this example. For this particular set of data only an approximately horizontal cut through 
the main lobe was measured. 

Applying small bins in Method 2a leads to a significantly underestimated TRP. Using larger bins mitigates 
partially this problem in this particular case. The uncertainty of the end result depends both on selection of 
sampling points and the post-processing method. It is noted that a straightforward numerical integration is 
most probably not suited for non-regular angular grids that are indirectly used in field testing. 

It should also be noted that in a chamber measurement the TRP error corresponding to using 3GPP reference 
steps is negligible, see [12] [13]. Here, the 3GPP reference steps are 10x15 degrees in theta and phi. The 
binned e.i.r.p. pattern is depicted in Figure 28 and the integrated result (TRP) in Figure 29. Note that the results 
are the first obtained from the field trial and the route of TA positions was taken without any knowledge of the 
final result. 

In the Method 2b the horizontal HPBW is extracted from the measurement data and the GNSS coordinates. 
However, due to lack of vertical data, the vertical HPBW was set equal to the horizontal HPBW. This is based 
on chamber measurements and design of the AAS. 

In comparison to method 1 (co-located UE and TA), the current method does not rely on declared directivity 
of the AAS. 

The uncertainty of the assessment is subject to further investigation. 

5.3.4.3 Method 3: Moving UE and fixed test point, result examples 

The measurement route and the received power is depicted in Figure 30. The sum of two orthogonal 
polarisations and cable losses is accounted for. 

 

Figure 30: Measurement route of UE. The TA is located at a fixed position (red cross) and the BS at 
approx. 42 m height is depicted as a yellow square. The colour indicates the received power at the 

TA port, and each dot is placed at the simultaneous location of the UE 

By synchronising the time of the UE position data to the time scale of the power data, the power per UE position 
is obtained. For each UE position the average downlink power is calculated. The received power will be a 
mixed signal, containing SSB, broadcast and traffic data. To simply take the time average will therefore not 
give a representative power value for the traffic data. In order to handle this, without de-modulating the data, 
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a histogram technique is used to find the most common level. This power level is used as an estimate of the 
power level of the downlink traffic data. The UE positions is converted to a direction relative to the AAS BS 
(see Figure 31). The power value is scaled to e.i.r.p. by distance and TA gain. 

 

Figure 31: Projection of UE positions in Method 3 on a sphere, used for angular binning of data.  
The blue dots represent the ground level at -42m and the BS at 0m. All axes are in metres 

 

Figure 32: Received power converted to e.i.r.p. at UE angles 𝜽𝜽 and 𝝓𝝓 in Method D-3 

Finally, for each angular bin, all power values are averaged and assigned to the bin (see Figure 33 and Figure 
34), and standard spherical integration is used to calculate a TRP estimate as in Method 2. The final result 
depends on the angular bin size, test route, and the extrapolation used for bins with no data (see Figure 35). 

In a street level measurement, only a small part of the e.i.r.p. pattern can be measured. However, for in-band 
signals a manifest main lobe should appear. Most of the power will be radiated through the main beam and 
the remaining power can be thought of as the average sidelobe power radiated through the sidelobe regions. 
Two approaches are implemented to take into account the unused bins: In the first method the unused bins 
are populated with zero data, and in a second approach a sidelobe level is calculated as the average of all 
bins at least -13 dB below the peak bin. This level is then used for all bins that lack measured power values. 



ECC REPORT 345 - Page 44 

 

 

Figure 33: Assignment of beam directions to angular bins for a 2x3 grid 

 

 

Figure 34: Binning of e.i.r.p. data using 3GPP reference steps for TRP assessment 

In the case of 10x15 degrees as defined as the 3GPP reference steps [13], more samples are assigned per 
bin, compared to the grid used in Figure 33, but the end result turns out to be closer to the true value for this 
measurement. 
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Figure 35: Initial Method 3 TRP results. The two leftmost results have used zero-value for unused 
bins, while the two rightmost results (“Extrapolated”) have used an average sidelobe-level for all 

bins that lack measured power values 

Initial handheld measurements were performed using method 3. It is seen in Figure 35 that these 
measurements can be simulated with good accuracy. Simulated results are used for the following discussion. 
In the simulations, it is assumed that a test UE is moved on a spherical surface in the service area of the BS, 
mounted on a drone. It is important to choose the size of the post-processing bins, such that there are samples 
assigned to each bin. Two different aspects of the measurement setup are considered: placement of the test 
antenna in the cell and the effect of presence of other UEs in the cell during the test. 

5.3.5 Simulation-based validation of methodology 

5.3.5.1 Simulation of placement of the test antenna in the cell 

The position of the test antenna in the cell will affect the TRP proxy. To capture the power radiated in the cell 
in the best way, the test antenna should be placed at the centre direction of the cell. To show the effect of the 
test antenna position, two cases are compared: (a) test antenna in the middle and (b) the edge of the cell, 
respectively. The simulated power at the test antenna is plotted in Figure 36 and TRP proxy for these two 
cases is depicted in Figure 37.  

For the results in this section, it is assumed that the bins out of cell are filled with zero values. Therefore, the 
TRP proxy underestimates the full-sphere TRP (normalised to 0 dB level). Additional underestimation is seen 
when the test antenna is placed on the edge of the cell. This is because in this case the proxy pattern is 
truncated non-symmetrically and near sidelobes on one side are omitted while on the other side further 
sidelobes with lower power are taken into the calculation, see Figure 36 for comparison. 
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Figure 36: Simulation of the measured power at the test antenna, vs the drone positions. The test 
antenna is placed at the middle of the cell (left) and the edge of the cell (right). The direction from the 

BS (red cross) towards the test antenna is shown with the dashed black line 

 

  

Figure 37: Simulation of TRP proxy for different positions of the test antenna in the cell. The 0 dB 
level corresponds to full-sphere TRP 

5.3.5.2 Simulation of other UEs in the cell 

Figure 38 shows the simulated scenario where the test antenna, shown with the yellow pin, is placed in the 
centre of the cell. The test UE is moving on a spherical surface in the cell, shown with the yellow arc. The blue 
lines show a 120° sector. Three scenarios are considered for the second UE. In scenario (a) it is stationary 
during the test, in scenario (b) it is moving on a path not close to the test antenna, while in scenario (c) the UE 
is moving in the vicinity of the test antenna. The stationary position as well as the paths of the second UE are 
shown with green markers in Figure 38. In the simulations, it is assumed that the cell resources are divided 
equally between the two UEs.  
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Figure 38: Simulated placement of the test antenna and the secondary UE position in method 3 

The effect of the second UE on the TRP proxy is shown in Figure 39. 

 

Figure 39: Simulated TRP proxy estimation in the presence of other UEs 

It is observed that the result can be affected by the presence of other UEs in the cell. A UE close to the test 
antenna will increase the TRP proxy value while a UE farther away will decrease the TRP proxy. Presence of 
more UEs in different areas of the cell can cancel out each other’s effect in the averaging post-processing 
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step. To minimise the effect of other UEs, the test UE should be forced to download large amounts of data in 
order to consume a larger part of the cell resources, and the effect of close UEs should be mitigated. If further 
time synchronised information is available, either at the UE or the BS, the power samples corresponding to 
the other UEs can be filtered out from the data. 

5.3.6 Summary for the methods tested 

Preliminary results from a field trial demonstrate the possibility to measure TRP using street level power density 
measurements. Test examples presented in this report are from measuring BS operating in the 26.5- 29.5 GHz 
band, but the methods are applicable to other frequency bands. The high gain of the test antenna (TA) is 
important, but analysis on how much the TA gain can be relaxed has not been done. An alternative way of 
discriminating channel effects is of course to get closer using e.g. drones. The final TRP result is compared to 
chamber measurements and the output power settings are probably not identical to the ones used in the field.  

For in-band measurements, a single point measurement (method 1) can be used with the knowledge of peak 
directivity. However, using multiple points (in line-of-sight conditions) provides a sanity check and gives a rough 
feeling of the uncertainty of the method. It also helps to find the “best” test point corresponding to peak 
directivity. 

If the directivity is not known, several test points must be used. Two different approaches have been shown. 
In Method 2a the result depends on the post-processing and adequate handling of the independence of the 
data samples. Vertically or radially distributed test points would probably help here. 

In Method 2b the test points should probably also have been distributed radially or vertically, preferably using 
drones. 

In a third method the TA is fixed and the UE is moving, implying a moving beam. A TRP proxy is then calculated 
as an average over beams, and possibly some TA locations, using adequate post-processing to avoid over-
representation of dependent power samples. Initial results for street level UE positions show low estimates of 
TRP which can most probably be improved by using elevated UE positions or using a flying drone to move the 
UE. It’s important to follow the recommendations on the test antenna placement in the cell and bin size for 
post-processing. Furthermore, some techniques to mitigate the effect of other UEs have been identified. 
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 CONCLUSIONS 

The elaboration on possible issues and properties of 5G AAS base stations proves that over-the-air 
measurements of their emissions are extremely challenging and, in many aspects different from 
measurements of systems with passive antenna systems. 

Depending on the required result, purpose of the measurement, knowledge of certain RF parameters, possible 
test modes of the base station, and available equipment, there is no single suitable measurement method 
covering all cases. Instead, the final approach to the measurement needs to be based on a combination of the 
signals to be measured, available a-priori information and measurement equipment. 

This Report contains case studies of three practical measurements with different combinations of the above. 
These are: 
 Ground-based measurement of the broadcast and synchronisation signal in normal operating mode of the 

base station; 
 Airborne measurement of the broadcast and synchronisation signal as well as the traffic signals with a 

drone while the base station is in a test mode, over a static beam; 
 Ground-based measurement by attracting a traffic beam with an active user equipment while the base 

station is in normal operating mode. 

All three presented methods achieved good results with reasonable accuracy.  

To specify reliable values for representative measurement uncertainty, more measurements are necessary. 
From current experience the uncertainties can be estimated to be in the order of 2-4 dB. 

This Report has addressed measurements of in-band power of AAS. Further work is necessary to investigate 
suitable methods for the unwanted emissions of AAS and for different deployment scenarios. 
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ANNEX 1: SELECTION OF TEST ANTENNA 

The gain and the beamwidth of antennas are dependent, and inversely proportional, i.e. 

𝐺𝐺 =
C

HPBW𝜃𝜃 ∗ HPBW𝜙𝜙
 (20) 

where C is a constant which depends on the antenna type. Properties of TAs for field measurements are easier 
to describe in terms of beamwidth and the gain of the TA is hence implicitly defined. The Half Power Beamwidth 
(HPBW) is by definition the width of the angular region within the main lobe wherein the gain is at least 50% 
of the peak gain. The main lobe of the antenna radiation pattern is typically wider. In antenna chamber 
measurements [14], covering the test object with the HPBW is deemed to be good enough for accurate 
measurement results. In field measurements, the purpose of the TA is to detect the Line of Sight (LoS) signal 
from the base station in the presence of scattered and interfering signals. Scattered signals may come from 
buildings, ground, open water etc. One of the most challenging signals to suppress is the ground reflection.  

In order to suppress scattering from the environment the TA HPBW should cover just the BS and nothing else 
(see Figure 40). However, this leads to very narrow HPBW and extremely high gain values in field testing 
scenarios, due to the much larger testing distance. Moreover, proper alignment will be quite challenging.  

 

Figure 40: Illustration of optimal scattering suppression by using a high gain TA with a narrow beam, 
selected to just cover the BS. Note that that interfering signals such as the ground reflection is 
suppressed by the relatively small gain in the sidelobes of the TA. The green area depicts the 

radiation pattern of the TA 

A pragmatic criterion for TA selection is to cover the BS, any BS tower, and a fraction of the building it is 
mounted on. In addition, the ground reflection should be suppressed by receiving it within the sidelobe region 
of the TA (see Figure 41). To ensure LoS conditions, scatterers within the first Fresnel zone should be avoided. 
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Figure 41: Illustration of recommended beamwidth of TA. The main beam covers the antenna tower 
and a fraction of the building, and the ground reflection is received by a sidelobe, and hence 

suppressed. Note, that at large distances the ground reflection will be received in the main beam. 
Hence, each TA has a range of distances for proper operation 

Figure 42 illustrates the effect of using a too large beamwidth. In this scenario the requirements on alignment 
can be relaxed. On the other hand the desired signal is contaminated with the ground reflection, other 
scattering effects and signals from other cells.  

 

Figure 42: Use of a too wide main beam (low gain TA) leads to large measurement errors due to 
interference, here ground reflection and interfering signals from other cells 

To summarise the above observations: 
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Use a high gain antenna with a HPBW that covers: 
 The BS antenna; 
 The BS tower; 
 Fractions of the building the BS is mounted on. 

And does not cover: 
 The ground; 
 Neighbouring buildings; 
 Other BS towers. 

Note: the height of the TA over ground can help in suppressing ground reflections as well as keeping the 
ground and other interferers out of the first Fresnel zone.  
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ANNEX 2: DETECTION OF TRAFFIC POWER LEVELS WITHOUT DEMODULATION 

When using a UE to trigger traffic data, the power level can be retrieved as the most common power level. To 
do this: 
1 Divide all time samples into time bins1; 
2 Convert power values to logarithmic scale (dB); 
3 In each time bin,  

 sort the data in a set of power level bins equally spaced in dB. (The reason for using a logarithmic 
scale is the high dynamic range of the received power levels); 

 Identify the power level bin containing the largest number of samples; 
 Determine the traffic power level as the midpoint power level of the identified bin. 

Two examples are given below. In the first example, the traffic power is in the upper part of the dynamic range, 
which is typical in e.g. the main lobe (see Figure 43 and Figure 44). In a second example the received power 
is in the lower part of the dynamic range, which is typical for a sidelobe measurement (see Figure 45 and 
Figure 46). 

 
Figure 43: Received power levels in one time block containing 500 samples detected at 44.1 kHz rate. 

The most common power value, the traffic power, is depicted by a red dashed line. This value is 
detected using a histogram technique (see Figure 44) 

 
1 In the given examples a sampling rate of 44.1 kHz and 500 samples per bin is used, corresponding to 11.3 ms/bin 
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Figure 44: The data of Figure 43 as a histogram. The traffic power is determined as the bin containing 
the most samples. In this case the traffic power is significantly higher than the SSB power 

 
Figure 45: Received power levels in a time block corresponding to a sidelobe region of the traffic 

beam. The most common power value is here in the lower end in the range of detected power values 
within the block. This value is detected using a histogram technique (see Figure 46) 



  ECC REPORT 345 - Page 55 

 

 

 

Figure 46: The data of Figure 45 depicted as a histogram. The traffic power is here determined as the 
bin containing the most samples. Pure average calculation would introduce a significant error 
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